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ABSTRACT

Deslgn techniques for linear multivariable systems
are considered. Both conventional, frequency-domain tech-
niques and modern, combined frequency-domain, time-~domain
procedures are consldered. DNoninteractlion ls taken as one
of the two basic deslgn requirements; the other is that
specifled subsystem transfer functions be achieved. Con-
ventional methods are quickly shown to have the disadvan-
tage of complexity--both in carrying out the design cal-
culations and in the physical implementation of the
compensation.

The bulk of the attentlon to design ls glven to
the state variable feedback design of multivarliable systems.
All previous work 1s summarized, including procedures which
make possible the identification of the fixed zeroes of
the subsystems of the multivariable system and the number
of subsystem poles which are controlled by state varlable
feedback. By treating each subsystem individually, the
designer can apply some of the previously developed
knowledge of state varleble feedback design of single-
input, single-output systems,

A topic which has not been previously studled 1s
the addition of dynamics to the multivariable system
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before state variable feedback 1s applied, for the purpose
of lmproving the system response. Three methods are pro-
rosed and analyzed for adding dynamics. The first,

Method A, requlires that the compensation, or additional
dynamics, be placed in the control input channels of the
multivarigble plant and that all the states of the aug-
mented system be fed back. This method i1s the preferred
one when it works, because of 1ts simpliclty. Its most
serious drawback is that the plant whlch results from the
addition of compensation by Method A may have lost the
ability to be decoupled by state variable feedback, even
though it possessed that ability before the compensatlion
was added. Another disadvantage 1s that there 1is no sure
way of knowing how the structures of the subsystem transfer
functions are affected by the added compensation. Thus,
the desligner has no guide to determining what to put 1in
the compensators.

One important, practical case of Method A is
considered in detail; namely, the case where first-order
compensators of the same form are added in all the input
channels, It is shown that decoupling 1s never lost by
this procedure.

The second method, Method B, 1s shown to have
serious practical problems and 1s glven only a brief

treatment,




In Method C the problems of Method A are eliminated
by the intermediate step of decoupling the plant before
the compensation is added and all the states are fed back.
When Method C is used, it 1s proved that the structure of
the final, compensated system is completely determined by
the structure of the decoupled plant and the structure of
the added compensation. Unlike Method A, the designer now
knows what compensation to add in order to meet the design
' specifications.

Orderly design procedures are presented both for
the case where additional compensation is not needed and
for the case where it 1is. For the most part, the design
procedures are based on previously known techniques.
However, a procedure ls presented which allows a savings
in computational labor in certain design problems ﬁhere
dynamics are added to the multivariable system.

A practical example of the applicatlion of state
variable feedback design is glven. The speciflic physical
system considered is the coupled-core nuclear reactor, and
a three-core linear model is used. Finally, suggestiéns

are gliven for further research.
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CHAPTER 1
INTRODUCTION

In control engineering one studies the problem of
forcing some physical system such as a rocket, nuclear re-
actor, chemical processing plant, or even an economic or
soclal system to behave in a manner which meets prescribed
performance specificatlions. Such diverse physical systems
as those mentioned exhlbit many similarities, once the
mathematical models describing thelr behavior are found
and compared., - In fact, much of control engineering in-
volves the study of the behavlor of the abstract system
models, rather than the specialized study of the physical
systems. Presumably, after the control englneer acquires
a thorough understanding of the general principles and
techniques of control theory, he is ready to make useful
contributions to the actual design problems in a variety
of fields where physical processes must be controlled.

The specific concern of this study is the design
(in the abstract sense discussed above) of systems which
have a multiplicity of inputs and outputs, and for which
the number of inputs 1s equal to the number of outputs.

Examples of such systems are




1. An alrcraft flight control system where
typical inputs are the rudder deflection
and the aileron deflection, and the outputs
are the roll rate and yaw rate of the
ailrcraft,
2. A turboprop Jjet engine control, where the
inputs are the propeller blade angle and
the fuel rate, and the outputs are the
engine speed and turbline inlet temperature.
3. A set of coupled-core reactors, where the
inputs are the control-rod positions and
the outputs are the power levels of the
individual reactors,
For each of the above examples one input affects more then
one output. In the first example, for instance, the rudder
setting affects both the yaw of the aircraft and its roll
rate. Such multivariable systems are sald to be coupled,
Both the terms noninteraction and decoupled are
used to describe the situation in which each input of the
multivariable system affects one and only one output.
Since coupling 1s usually inherent in the plant, or system
before it has been designed, noninteraction is a condi-
tion which is part of the design objective, One advantage
of choosing noninteraction as a design requirement 1s that
the decoupled system appears to function in the simplest

possible manner when seen from the input-output point




of view., A further advantage is that once noninteraction
1s obtained, the multivariable system is reduced to a set
of single-~input, single-output systems, and the well-
established design techniques for such system are
applicable. Both these advantages are present when the
methods described in thls study are used.

The first attempts to formulate design procedures
in which noninteractlon l1ls requlred were reported in the
1950's and early 1960's (Boksenbom and Hood, 1949; Povejsil
and Fuchs, 1955; Freeman, 1957, 1958; Kavanagh, 1956, 1957,
1958; Horowitz, 1960; Chen, Mathilas, and Sauter, 1962).
The multivariable system is assumed to be describvable by a
set of linear differential equations with constant co-
efficlents, and the Laplace transform is used to obtain
the corresponding set of linear algebralc egquations in the
complex frequency variable s. Methods based on this de-
scription are known as frequency-domain techniques.

Chapter 2 discusses notation and descrlibes two
typical frequency-domain design techniques, designated
Configuration I design and Configuration II deslgn. Thelr
basic design objectives are noninteraction and the reali-
zation of given transfer function relationshlps between
each input and its corresponding output. The relevant
design equations are derived in each case, and the dis-
advantages of the methods are pointed out; the latter are

that it is difficult to carry out the computations which




the procedures require and that there is no assurance that
the resulting system compensation can be implemented on
the physical system. In a sense, the chapter is a
"warm-up" because the succeeding chapters describe design
techniques that are superlor to those of Chapter 2.

Chapter 3 provides a comprehensive treatment of
the material on which the main contributions of disserta-
tion are baseds The modern, state variable description of
the multivariable system in both time- and frequency-domain
is used, Again, the design objectives are noninteraction
and the realization of transfer function relationships
between input-output pairs. The deslign objectives are
achieved by feeding back all the state variables of the
system and by coupling in the system inputs; this form of
compensation, known as state variable feedback, was studlied
by Morgen (1963, 1966), Rekasius (1965), Falb and Wolovich
(1967 a, b), and Gilbert (1968). The first two of the
above authors present results which are superseded by the
work of the last three authors,

Falb and Wolovich formulated and proved a necessary
and sufficient test for determining whether or not state
variable feedback can decouple the multivariable systen,
They also developed a stendard procedure for decoupling
and presented a design technique in which certain of the

system poles are controlled, but all zeroes are canceled,




Gilbert utilized Falb and Wolovich's standard
procedure for decoupling and changed variables in the de=-
coupled system to establish a canonical form for the multi-
varlable systems The use of his canonical form permits
the 1ldentification of m decoupled subsystems, where m is
the number of inputs (and outputs); it also makes it
possible to apply the well-developed state variable feed-
back design technique for single-input, single-output
systems discussed by Schultz and Melsa (1967). If state
variable feedback 1s appllied to each of the decoupled sub-
systems, then the subsystem poles can be placed arbitrarily
but the zeroes remain fixed. In addition, there are some
poles of the multivariable system which cannot be controlled
by state variable feedback 1f decoupling 1s to be preserved.

The work of Gilbert described in Chapter 3 1s
notable for 1ts completeness. All that is necessary to
design the multivariable system by state variable feedback
is given,

The fact that state variable feedback cannot change
the order of the system and cannot by itself add new Zeroes
to the system 1s a dlsadvantage because a common design
specification is zero velocity-error coefficlent, and
control over the zeroes 1s needed to meet this requirement.
Other design situations require that poles be added to the
system, In single-input, single~output design, additional

dynamics are added by inserting compensator networks,




The extension of this technique to multivariable systems
is the subject of Chapter 4. This chapter contains the
main contributions of the dissertation.

Three methods are discussed in Chapter 4 for adding
additional dynamics to the multivariable plant. In Method
A compensator networks are added in the input channels of
the plant. This method, although it has the advantage of
simplicity, does not always glve the deslred results. Its
most serlous drawback 1s that the plant which results from
the addition of compensation by Method A may have lost the
ability to be decoupled by state variable feedback, even
though 1t possessed that ablility before the compensation
was added. A further disadvantage is that there is no
sure way of knowing how the structures of subsystem transfer
functions are affected by the added compensation. Thus,
the designer has no gulde to determining what to put in
the compensators,

One important, practlical case of Method A is
consldered in detall; namely, the case in which first-
order compensators of the same form are added in all the
input channels; according to Theorem 4.1 decoupling is
never lost by this procedure.

The second method, Method B, 1s shown to have
serious practical problems, and 1s best considered as a

step towards Method C,




In Method C the problems of Method A are eliminated
by the intermedlate step of decoupling the plant before
the compensation is added, and all states are fed back.
This fact is intuitively plausible but must be proved;

a proof is provided in Theorem 4.3, Theorem 4.3 1is the
central result of the chapter. Although its proof 1is
abstract, its content 1s easily understood. Basically,

the theorem shows that in desligning a system by Method C,
one knows beforehand that the structure of the final, compen-
sated system is completely determined by the structure of
the decoupled plant and the structure of the added
compensation., Unlike Method A, the designer now knows

what compensation to add in order to meet the design speci-
fications; exactly the same freedom exists in single-input,
single-output design problems as that provided by the use
of Method C.

Progress through Chapters 3 and 4 reveals that the
design procedures for state variable feedback design of
nultivariable systems--whether or not additional compensa-
tion is needed--are quite complicated in comparison with
single-input, single-output design. Chapter 5 alleviates
the complexity in two ways. First, an orderly design
procedure, complete with all relevant formulas, is pre-
sented both for the case where additiondl compensation 1s
not needed and for the case where it 1s. Second,

computationally efficient algorithms are presented for




carrying out the deslign steps by digital computer. Most
of Chapter 5 is not new; however, a new ldea 1ls presented
which allows a savings in computational labor 1in certaln
deslign problems where additlional compensation ls needed.,

In Chapter 6 a practical example of state variable
feedback design is given. The specific physical multi-
variable system considered is the coupled-core nuclear
reactor (Weaver, 1968).

Chapter 7 presents the concluslons and suggestions

for further research.




CHAPTER 2
CONVENTIONAL, FREQUENCY-DOMAIN TECHNIQUES

In this chapter notatlon and the means for
modeling multivariable systems in both the frequency
domain and the time domain are given. Compensation and
the design constraint called noninteraction are introduced.
Two frequency=-domaln design techniques are presented as
typical of previous efforts to compensate multivariable
systems. The basic aim is the demonstration of thelr
inadequacy, as a means for developing perspective and for
leading into the state variable design technique of the
following chapters.

This chapter provides essential background material
but, except for Theorem 2,1, no new results are presented

here,

Plant Equations and Notatlion

Linear, time-invariant multivariable control
systems have one or more inputs and one or more outputs;
this is the origin of the term "multivariable”. The inputs
and outputs are related by a set of ordinary, linear

differential equations with constant coefficlents.




It is assumed in what follows that the number of inputs is
the same as the number of outputs., Means for augmenting
the multivariable system so that thls constraint is satlis-
fied are discussed in Chen et al (1962),'for the case where
there are fewer outputs than inputs. Very little work has
been done on systems which have more outputs than inputs
(Leeds and Cox, 1967).

Conventional, frequency~domain design technigues
require a mathematical description of the system of the
form

y(s) = P(s)u(s) 2,1
Here all quantities are Laplace transformed quantities and
are functions of the complex frequency variable s.

y(s) is an m-dimensional vector, the output
of the system

u(s) is an m-dimensional vector, the control
input to the systenm

P(s) is an m x m matrix, the plant matrix

Lower case letters are used for scalars and
vectors. When subscripts or superscripts are used, lower
case letters refer to elther scalars or elements of
vectors which may themselves be elther vectors or scalars.
Capital letters with subscripts or superscripts denote
submatrices of the matrix represented by the same capital
letter without the subscript. The superscripts T and =1

are used to denote the transpose and the inverse of a
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matrix, respectively. The symbol O is used for the
scalar 0, the null vector, and the null matrix. Vectors
and matrices are not underlined because for the most part
very few scalars appear in the text and these are always
explicltly pointed out, Whenever feasible the notation
used 1s the same as that used in current papers on the
subject of the design of multivariable systems using state
variable feedback,

As Equation 2.1 indicates, the input and the output
are related by a transfer matrix. This is in contiast to
single-input, single-output systems where the input and
output are related by a transfer functlion. Each of the
elements of the plant matrix P(s) (e.g., plj(s)) is a
transfer function,

Modern, time-domain and combined frequency-domalin,
time-domain design techniques reguire the mathematlcal
description of the system to have the following form

x(t) = Ax(t) + Bu(t) 2.2

y(t) = Cx(t) 2.3
Here the * indicates differentiation with respect to the
time t and

x(t) is an n-dimensional vector, the state of
the systen

u(t) is an m-dimensional vector, the control
input to the system

11




y(t) is an m-dimensional vector, the output of
the system

A is an n x n matrix of constants, the system
matrix

B is an n x m matrix of constants, the control
input matrix

Cis annr x n matrix of constants, tﬁe output
natrix

(Note that y is being used as the symbol for both a
function of time, in Equation 2.3, and, in Equation 2,1,
for the-Laplace transform of itself, now a function of s.
Once understood, this usage is not a source of confusion.)
The number of states, n, is required to be.greater than or
equal to the number of control inputs, m. Equation 2.2 1is
a set of coupled first-order linear differential equations,
and Equation 2.3 defines the m outputs of the system as
linear combinations of the n states.

Both the frequency-domain and the time-domain
representations given above refer to the same physical
system; they are merely two different ways of describlng
it. Equations 2.1, 2.2, and 2.3 are taken as starting
points. Methods for modeling physical systems in terms of
these types of equations and state variable concepts are
discussed in many textbooks, such as Cannon {(1967) and

Schultz and Melsa (1967).
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Forms of Compensation
The bagic problem beling considered is that of

realizing the desired performance in a multivariable
system. To accomplish this aim, often the fixed plant
must be compensated; i.e., additional physical components
such as electronic amplifiers and resistor-capacitor net-
works must be used to alter the dynamic system performance,
Here, the mathematical aspects of the compensation problem
rather than the "hardware" aspects are treated. _
Three forms of compensation are to be consldered
and all three are defined in terms of thelr effect on the

control input u. They are

u(s) = D(s)lr(s) - y(s)] 2.4
u(s) = G(s)r(s) + L(s)y(s) 2.5
u{t) = Fx(t) + Gr(t) " 2.6

The variable r is an m-dimensional vector, representing
the system input, and should not be confused with the
control input, u, The matrices D, G, and L are of dlmen=

silonmxmand F is n x n. Equations 2.4 and 2.5 apply to

the system when it 1s represented as in Equation 2.13 1.e.,

in the frequency-domain formulation. Equation 2.6 applies
to the state variable formulation of Equation 2,2 and 2,3,
and in this case the matrices F and G are assumed to have

constant elements.
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The first two control inputs given above lead to
Configuration I Design and Configuration II Design,
respectively. These two frequency-domain design technlques
are discussed in this chapter. The third control input
applies to the state variable feedback design technique;
by far it occuples the bulk of the attention in the
chapters which follow.

Once the control input has been chosen, the
relationship between the system input r and the output y
can be found. This relationship is indicated by the
equation

y(s) = H(s)r(s) 2,7
where H(s) is an m x m transmission matrix., H(s) is a
function of the fixed portion of the system and the control
input u. H(s) is to be chosen by the designer to satisfy
design specificatlions such as bandwidths, rise times, and

steady~state errors.

Noninteraction
The equations representing a multivariable system
are coupled. This means that if one of the system inputs,
say Ty is changed, then not only output y; is changed,
but in general all the outputs are affected, A great
simplification in the apparent operation of the system

would be to have noninteraction. With noninteraction

14



each input affects one and only one output. In terms of
Equation 2,7 noninteraction can be defined as follows:

Definition 2.1 A system is said to be

noninteracting when the transmission matrix

H defined by the equation y = Hr is dlagonsal

and nonsingular.

Nonsingularity 1s necessary to insure that none of the
diagonal elements of H is zero.

This definition of noninteraction coineides with
that of Gilbert (1968) and is equivalent to the one given
by Falb and Wolovich (1967a); it follows the intent of one
of the earllest papers on multivariable control systems:
Boksenbom and Hood (1949).

Multivariable systems are inherently interacting.
In a Jet engine, for example, when a control input such as
the fuel flow rate 1s changed, both the engine speed and
the engine temperature change. Now when the system has
been compensated for noninteraction, a change in the input
corresponding to the control input fuel flow rate would
cause all the control inputs to change in such a manner
that only the single output corresponding to flow rate will
change, Thus from an input-output point of view the system
possesses noninteraction, while from a control input-output

polint of view it 1s still interacting,
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Noninteracting multivariable systems can be
concelved as consisting of a collection of individual
subsystems, each of which has a single input and a single
output. Dealing with single-~input, single-output sub-
systems has two advantagess First, the problem of speclfy=-
ing performance requirements 1s simplified, Second, each
subsystem can be treated separately. The problem of de-
signing to meet the specifications 1s then a more tractable
one because there are many design techniques for single=~
input, single-output systems. In the design procedures
discussed in the following chapters the criterion of
noninteraction is taken as the fundamental design require-

ment to be met,

Configuration I Design

For Configuration I the form of compensatlion to
be used is that given in Equation 2.4 and shown in
Pigure 2.1(b) (where the double lines are used to indicate
vector quantities). The matrix D(s) is the unknown com~
pensation transfer function matrix. Configuration I has
been discussed by many authors, but perhaps the bulk of
the theory 1is presented in the paper and the attendant
discussions given in Chen et al (1962), and the papers
by Povejsil and Fuchs (1955), Mathias (1963), Gillbert (1963),
and Chen (1968 a, b).
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u(s)——> P(s)

——v(s)

(a) The Fixed Plant

r(s D(s)

P(s) .’_;)Y(S)

N 4

(b) Compensated System for Configuration I Design

u(s)

NY

P(s)————A)y(s)

+
r(s G(s) 3{‘;—
>

L(s)k~

(ec) Conipensated System for Configuration II Design

Figure 2.1 Conventional, Frequency~-Domaln Design Techniques
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Substituting Equation 2.4 into the plant equation,

2,1, gives
y(s) = P(s)D(s)(r(s) -~ y(s)] 2.8
and solving Equatlon 2.8 for y(s) yields
y(s) = (I + P(S)D(s)]-lP(s)D(s)r(s) 2,9

where I is the m x m unit matrix., The transmission matrix
relating the input r(s) and the output y(s) is thus
H(s) = [I + P(s)D(s)1"'P(s)D(s) 2,10
The particular case of most interest 1s the one
where noninteraction 1is given as one of the design
criteria., 1In this case it is possible to find an expres-
sion for H(s) which shows clearly that the multivariable
system can be regarded as a set of single-input, single~
output subsjstems.
Let the loop gain matrix N(s) be defined by the
equation
N(s) = P(s)D(=) 2,11
Substituting N(s) into Equation 2.10 gives
B(a) = [I + N(s)1"'N(s)
(v Ys) 1 + N(a) 1
= (x1(s) + 1371 2,12

For noninteraction H(s) must be a diagonal matrix, From
the above equation H(s) will be dilagonal if N(s) is a
diagonal matrix, In fact, if N(s) is given by

18




B ]
nii(s) o oo e 0
O nzz(s) [N N ] 0
N(S) = . . .
L 0 0 s nmm(S)_ 2013
then Equation 2,12 becomes
n11(s) 0 0
——7—)-1‘5‘1’111 S see
ngs(s)
m—z—z-(-é-y see 0
H(s) = .
0 0 vos npm(s)
| 1"'nmsz)-J 2.14

Equation 2,14 shows that the multivariable system
consists of m subsystems, each of which has one input, one
output, a loop galn transfer function n,(s), and unity
feedback. The n,,(s) depend on both P(s) and D(s) and

are to be selected to give a satisfactory response from

input Ty to output y4.
Once the matrix N(s) has been selected, the elements

of D(s) can be found. Let Pfifs) be expressed as

() = &tﬁ{,% 2,15

~
where det P(s) is the determinant of P(g) and & (s) is
the adjoint matrix of P(s), (Nering, 1963), having

19




elements .5%4(8). Then from the equation which defines
N(a), Bjuation 2,11,
D(s) = P~1(s)N(s)
p

a méé-?%y N(s) 2.16

In terms of the elements of D(s), Equation 2,16 becomes
m
d“(s) n a-e?lm-y Z ;)iknkj(s) 2,17
k=1

or since N(s) is a diagonal matrix,

# ,(8)
dj_J(B) = a_e%‘LP-‘?T n“(s) 2,18

In summary, when noninteracting systems are to be
designed using Configuration I, the procedure is the
following. First, a set of loop gain transfer functions
i8 chosen to glve the desired input-output relationships
for each of the m input-output pairs, thereby determining
N(s). This step can be accomplished by using the standard
design technigques such as Bode plota, root locus diagrams,
and Nyquist diagrams., Second, the elements of D(s) are
found by using Equation 2,18,

A disadvantage of this approach can be seen by
examining Equation 2.18, which shows that the scheme is
basically one of cancellation. The term dij(s) is found
by multiplying the desired nJJ(s) by an element of P~1(s)s
in effect the plant is being "canceled out™ and new
dynamics are being inserted in its place. Cancellation 1is
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never exact because the plant is never known exactly,

The scheme also suffers from a computational standpoint,
as finding P~1(s) requires taking the inverse of & matrix
having elements which are functions of the literal
variable =,

In the paper by Chen et al (1962) cancellation and
right-half plane poles in P(s) are discussed, and con-
straints on D(s) are given. Unfortunately, when these
constraints are incorporated the resulting D(s) may have
& very complicated structure, The example in the last
reference cited required the capabllity of synthesizing
& D(=) having both poles and zeroes in the right-half
plane, Such compensators have no practical value.

More recently, Gilbert (1963) showed that the
general problem of cancellation and the effects of un-
stable transfer functions in P(s) are best clarified by
using concepts which are defined in terms of the state
variable representation. This discussion of Conflgura-
tion I in terms of state variable concepts is continued
in the papers by Chen (1968 a, b), where a means for

determining stability is given.

Conflenyation II Deslign

For Configuration II the form of compensation to
be used is indicated in Figure 2.1(c) and the equation
u(s) = L(s)y(s) + G(s)xr(s) 2.5

21

e e e



Here L(s) and G(s) are the unknown compensation matrices.
Configuration II has been discussed by Kavanagh (1956,
1957, 1958), Gibson (1963) and Rekasius (1965).

Substituting Equation 2.5 into Equation 2.1 and
golving for y(s) ylelds the expression for the transmission
nmatrix, as

H(s) = [T - P(s)L(s)1" P (s)G(a) 2.19
Multiplying both sldes of BEquation 2.19 by I - P(s)L(s)
and transposing terms gives

H(s) = P(s)L(s)H(s) + P(s8)G(8) 2,20
Given the desired H(s), one must solve the m? scalar
equations in Equation 2.20 (one for each element of H(s))
for the 2m? unknown elements of L(s) and G(s).

The overabundance of unknowns can be considered
both a boon and a burden, It is a boon, for example, when
gome of the inputs are noise or disturbance inputs and
cannot be manipulated; then some of the elements of G(s)
would be constrained to be 0, reducing the number of
unknowns. Other situations in which the number of unknowns
18 reduced are discussed in Kavenagh (1956). The over-
abundance of unknowns is burdensome because 1t hampers
the formulation of exact prccedures for solving for L(s)
and G(s); the computational problem is further compounded
by the fact that each of the so-called unknowns 1is itself
a transfer function which may have several unknown paramaters.
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Configuration II design can be recast in the
modern, state variable framewoxrk. This is instructive
because 1t shows how Configuration II design is related
to the state variable feedback technigue. Taking the
Laplace transform of HEquations 2.2 and 2,3, while assuming
zero initlal conditions, glves

sx(s) = Ax(s) + Bu(s) 2,21
y(8) = Cx(s) 2,22
Now the control input u(s) is given by
a(s) = L(s)y(s) + G(s)x(s)
= L(s)Cx(s) + G(s8)xr(s) 2.23

If noninteraction is required, necessary and
sufficient conditions can be given for the existence of
a noninteracting control., The requirement is that P(a)
be nonsingular, as Theorem 2.1 indicates. (The proof 1is
adapted from the proof of a theorem given in Rekasius
(1965).)

Theorenr 2.1 A necessary and sufficient condition

for the existence of a noninteracting control for

Configuration II is that P(s) be nonsingular,
Proof. Rearranging terms in Equation 2.23 yields

L(s)Cx(s) = u(s) - G(s)r(s) 2,24
Solving Equation 2,21 for x(s) and multiplying the result
by L(s)C gives

L(s)Cx(s) = L(s)C(sI - A)"1Bu(s)  2.25

.23




A comparison of Eguations 2.24 and 2,25 reveals that

u(s) - G(s)r(s) = L(s)C(sI - &) 1Bu(s) 2.26
or u(g) = [I - L(s)C(sI ~ A)'1B3°1G(s)r(é) 2,27
Now from the equation

y(8) = P(s)u(s) 2,1
and Equation 2,27 there results

y(s) = P(s){I - L(s)Cc(sI - 2)" 181 6(e)r(s)  2.28
so that

H(s) = P(s) (I - L(s)c(sI - )" 8] Ya(s) 2,29

To prove necessity it must be shown that P(s) is
nonsingular if a noninteracting control can be found,

Under the assumption of noninteraction, H(s) in Equation
2:29 18 a nonsingular diagonsl matrix., Taking its inverse
leads to the desired result; namely, that P(s) is
nonsingular. Sufficiency is proved by letting L(s) = 0
in Equation 2,29 and solving for the compensation matrix
G(s) in terms of H(s) and P~1(s).

Configuration II suffers from the same problems of
Conflguration I; namely, it is again necessary to invert
matrices which are functions of s, and there is no guaran-
tee that the compensation can be 1mplementéd with a reason-
able amount of equipment, if at all., In fact, if the scheme
in the proof of Theorem 2.1 is utilized, then L(s) = 0 and
G(s) = P'l(s)H(s). A glance at Figure 2.1(c) shows that this
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scheme has no feedback around the compensation; it is
basically an open=-loop cancellaticen gchemes

Instead of feeding back the system ovtputs and
coupling in the inputs, a2s indicated by Eguation 2,23, a
better scheme uses the control law

u(s) = F(s)x(s) + G(s)r(s) 2,30
Here all the states, rather than just certain linear
combinations of states, are being utilized., Theorem 2.1
still holds, and the same practical problems are present
in the design procedure.

Morgan (1963) proposed the use of & control input
of the type given in BEjuation 2,30-=-with the restrictlion
that F and G be constant matrices. The multivariable
system 1s now saild to be compensated by state variable

feedback, the subject of the remainder of thls work.

Conclusions
Two representative conventional techniques for

designing multivariable systems have been presented. For
the case of noninteraction, formal procedures are given
for carrying out the design process. Baslcally, the dis-
advantages of these techniques are that 1t is difficult
to perform the required computations and that the result-
ing compensation matrices may be difficult or impossible

to implement in a physlcal systen.
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Both the computational problem and the problem of
implementing the design arise because of the great
generality of the problem formulation. No restrictions
are placed on t@e compensation matrices, so that the number
of possible parameters which could be present is unlimited.
Under these clrcumstances it i1s to be expected that the
formulation of feasible systematic computational proce~
dures would be difficult and that desirable compensation
matrices could not be expected with any degree of
regularity.

In the following chapters the state variable
feedback design technique is treated. The form of com-
pensation 1s limited right at the start to a structure
that permits the application of linear algebra and matrix
theory to a far greater extent than 1s possible with con~
ventional deslign techniques. As a result the problems
of computation and ease of physical implementatlion are
greatly relieved, in exchange for a loss of generality

in the form of the closed loop system which can be achieved.
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CHAFTER 3
STATE VARIABLE FEEDBACK DESIGN

This chapter is intended to provide an up-to-~date
account of the status of state varlable feedback design
of multivariable systems. Except for computational as=-
pects, which are discussed in Chapter 5, the presentation
is sufficiently complete to enable one to design physical
systems by this technique. The primary concern of this
dissgsertation is the formulation of design technidques and
computational procedures for the case where state variadble
feedback alone is not sufficient for.meeting the design
requirements. The chapter must be understood if the main
contributions of the dissertation are to be understood and
assessed, but no new results appear here.

The state variable feedback form of compensation
was first proposed by Morgan (1963, 1964); his work is dis-
cussed in the first section of this chapter, Also dis-
cussed in the same section are the contributions of
Rekasius (1965), Only a brief account of thelr work 1is
given because later developments have more general
application,

The second section is a presentation of the work

of Faldb and Wolovich (1967 a, b). These authors formulated
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a simple test for determining whether or not the multi-
variable system can be decoupled by using state variable
feedback, They also provided the formulas for decoupling
the system into a form in which some of the system poles
can be arbitrarlily placed, but all of the zeroes are
canceled. The results here are not completely satisfactory
because the formulas do not provide for the greatest pos-
sible design freedom. However, the work of Falb and
Wolovich serves as the basis for understanding and using
the most'recent contribution to the development of the
design technique; namely, the work of Gilbert (1968),

The third section of thls chapter is devoted to
Gilbvert®s results. He provides a thorough and complete
treatment which relates the multivarliable problem to the
design of single-=input, single-output systems by state
variable feedback, This section is the culmination of
all previous work on state variable feedback designi system
behavior which has previously been unaccounted for is ex-
plained, the question of system stability is made clear,
and the limitations of design by state varlable feedback

alone are given. The chapter is concluded with a summary,

Early Design FEfforts
In the state variable formulation the plant

equations are assumed to be in the form
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x = Ax + Bu 3.1

y = Cx 3¢2
and the control input is taken to be

us=Fx + Gr 3.3
the vectors x, ¥y, and u are functions of time, but this
dependence is no longer being shown explicitly. Recall
that there are n states, m inputs, and m outputs.

Morgan (19613) is responsible for the introduction
of the form of the above control law u given in Equation
3.3. His approach to the problem requires making a linear
change of varlables that puts the system into the simpler
form

x = Ax + Bu . 3k

y=1[1I ol 3.5
where I is the m x m identity matrix and 0 is the
m X (n - m) null matrix. In order to avoid cumbersome
notation, the same symbols are being used for the new
representation; the linear transformation relating the
original variables to the variables in Equations 3.4 and
3.5 is discussed later.

The simplification lg that the m system outputs
are now equal to the first m state variables. Thls fact
is best utilized if the A, B, and F matrices are
partitioned into suhpatrices as follows:
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Aqq(mxm) Aqo(mx(n-m)) 5 B4 (mxm)
Ayg((n-m)mm) Ay ((n-m)x(n-m)) B, ( (n=m)xm)

F= [Fi(mxm)  Fp(mx(n-m))]
If the above partitioning scheme 1s used and the control
law of Eguation 3.3 is substituted into Eguation 3.4, the
state equationsg become
. A, 4+B4Fyq A +BiF2 B4G
x = 11 12 x + 1 T 3.6
Noninteraction is achlieved by isolating the first

m states, Let

Aq9p + B1F2 = 0 3.7
- c

Ayq + ByFq = A7y 3.8

B,G = Bg 3.9

where Aﬁl and Bg are nonsingular diagonal matrices. The

F and G which satisfy the above equations are

-1, ¢
Fq = By (A11 - A11) 3.10
-1
F2 = -B1 A12 3.11
¢ = B] B 3.12

provided that B4 is a nonsingular matrix. For the F and G

of Equations 3.10 - 3.12, Equation 3.6 is
c C
* A 0 B
= | o x+ | | 3.13
Ap1*tBoFy  Aga+BpFp BpG
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Clearly the first m state equations (and thus the m output
equations) are uncoupled first-order differential equations,

and each subsystem has the transfer function

yi(s) _ bgl
ri(S) - S = a&i

1=1, 2, eeepy 3014

where bgi and ail are the ith diagonal elements of the
matrices B and Ai1, respectively.

There are two drawbacks to Morgen's method, First,
only the sufficient condition that By be nonsingular is
given, and this allows only first-order subsystems to be
obtalned, In most multivariable systems it is to be
expected that such simple subsystem responses will not be
typical, so that B1 is singular for a typical system, and
the method is inapplicable. Second, even if the method
applies, the state equations involving the derivatives
;1' 1 =mbl, 40sy 0, aré not under the designer's control,
as Equation 3.13 indicates. The compensation matrices F
and G are completely determined by the specificatlion of
the first m state equations; therefore, there is no way
of insuring in advance that the last n-m state equations
have satisfactory responses or are even stable,

An improvement over Morgan's technique was developed
by Rekasius (1965). Here, his treatment of first-order

subsystems 1s glven, and its extenslions are discussed.
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Suppose the response of the multivariable systom is
specified by the designer to be

Voy + Vqy © HyT 3015
where Vg, Vi, and Wi are m X m diagonal matrices which
must be specified by the designer, Once again first-oxrder
uncoupled subsystems with no zeroes are being sought.

The expression for y is given by Equation 3.23

differentiating this equation with respect to time gives

y = Cx 3.16
The expression for ; is given in Equation 3.1; after the
control input of Equation 3.3 is substituted in Eguation
3.1, there results

; = (A + BF)x + BGr 3.17
so that Bquation 3,16 becomes

; = C(A + BF)x ¢+ CBGr 3,18
Now if BEquations 3.2 and 3,18 are substituted into Egquation
3615 and two terms in X are combined, the result is

- LvgC(A + BF) + V4CIx ¢+ VoCBGr = Wyr 3.19

The above equation is satisfied if the coefficient of x
is equal to O,

VoC(A 4+ BF) + V4C = 0 3020
and 1if

V,CBG = W, 3.21

0
These last two equations can be solved for F and G, as
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F = =(VOCB)°1(VOCA + 7,C) 3022

G = (VOCB)c'iwi 3023
If Vo is nonsingular, then Rokasius’ sufficient condition
for first-order noninteracting subsystems is that CB be a
nonsingular matrix,

In order to show the equivalency of the results

of Morgan and Rekasius, 1t is necessary to recall that
Morgan required the first m state variables to be equal
to the m outputs. Since most systems do not satisfy this
condition in their original variables, a linear change of
variables must be made. Let the new variables be X and let
the required transformation be cefined by

x="Tx 3624
Morgan (1963) showed that T is given by

C
T = [ i\ 3.25
c#

Here C is the system output matrix, which is assumed to bs
of rank m; C* is any (n - m) X n matrix which results in

a nonsingular T.

For the new variables % the control input matrix
B can be written in terms of T asnd Bg

B=1TB

Cc CB
= B = 3026
C* C#B
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Now recall that Morgan's partitioning of B was the
following

. | B

B=1_ 3.27

By

Thus the requirement that 51 be nonsingular ls the same as
Rekasius' requirement that CB be nonsingular. The equiva-
lence of Morgan's and Bekasius® work has been noted pre-
viously (Falb and Wolovich, 1967 a) but not shown
explicitly. For future reference, the symbols X and T
are used in the succeeding chapters in a different context,
The above procedure of Bekasius has been extended
by him in considering an uncoupled output equation of the
form
Voy(k) + vly(k"“ + ee0 + Vyy = wir(k'l) + oos + Wr 3.28
where the superscripts indicate time derivatives, and all
the V4 end Wy are diagonal matrices. Equation 3.28 pro=-
vides for the fealtzation of higher-order subsystem
responses. The same procedure that was employed in the
first-order case can be used to derive formulas similar to
those of Equations 3.20 and 3.21., Such formulas agaln
provide sufficient conditions for the realization of the
chosen decoupled response. The drawback 1s that there
is no assurance that a realizable response has been chosen

or even that the system can be decoupled at all,
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Rekasius' procedure 1s one of trial-and-error, with no
guarantee of success,

Both Morgan's and Rekasius' work contribute a
certaln amount of understanding to the multivariable
design problem. However, the developments to be described
in the next two sections relegate the earlier work to a

position of historical value only.

The Work of Falb and Wolovich

In this sectlon the work of Falb and Wolovich
(1967 a, b) is discussed, They are responsible for find-
ing a necessary and sufficient condition for decoupling
and for formulating a procedure for obtaining a less re=-
stricted class of compensated systems than those of
Morgan and Rekaslius.

Recognizing that the transfer functlons of the
different subsystems comprising the multivariable system
are generally different from one another in structure,
Falb and Wolovich treat each subsystem separately. Let
C1 denote the ith row of the output matrix C, and let
the scalars d4, d2, eeey dp be glven by

4, =mnl3 1 ¢;aA'BH 0, §=0, 1, veuy =11 3.29
or a4, = n-1 1f C,A%B = 0 for all J 3.30
To find 4,4 the successive row matrices C,B, ciAB. seey
CiAdlB must be formed, The scalar d; is the smallest
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integer such that ciAgiB ¢ 03 1t is shown later that
diéi represents the pole-zero excess for the ith subsystem.
A simple calculation and the use of the definition of d&‘
yield the results |
Cy (A < BF) = Cy4
Ci(a + BF)? = ¢, 42

]
]

a a
C,(A+ BF) t=cual

dq+ +
1¥l CiAdi 1. ciAdiBF 3.31

ci(A + BF)
Consider the individual output equations and the
effects of state variable feedback. From Equation 3.2,
¥y = G4 3.32
where y; i1s a scalar and is the ith component of the output
vector yo Eguation 3,32 is now successively differentlated
wntil the (di¢1)th derivative is reached, and at each step
Equation 3,31 is used to simplify the resulting expressions.
Taking the time derivative of Equation 3.32 yields
;g_ = Ci;I 3033
The exXpression for ; is found in EBEguation 3.1, but alfter
state variable feedback is applied, ; becomes
x = (A + BF)x + BGr 3034
If Bguation 3,34 is substituted into 3.33 and Equations
3,29 and 3,31 are used for simplification, the result is

that
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Continuing the above procedure for higher derivatives of
Yy glves

(2) 2
¥y = CIA =

o
®
[

a
v, (41) = ¢,a7x

yl(d1+1) = [c,a%1%1 4 ¢y A%BFIx + c,at

1BGr 3036
Since there are m outputs, m scalar equations of the above
form can be written,

Define the m~dimensional vector y%, them x m

matrix B*, and the m x n matrix A¥ ag follows:s

— - — — =
y, (d1%1) ciadia—T ciA&i+1
a a
y, (d2¥1) Co4 2B C, A 2%1
o= |72, pe = | 2, = |20 337
(& +1 Ay A1
¥ zﬂ | CyA B | A

Using these definitions all m scalar equations of the fora
of Equation 3,36 can be combined into the vector equation
y* = (A* + B*F)x + B%Gr 3.38

It is desired to decouple the multiveriable system

by using the as yet unknown compensation matrices F and Go.

Choose

1

F = F# = =B# "A% 3039

G = G* = 1 - 3,40

37




Then Equation 3,38 becomes

y* =1 3.41
so that F* and G* decouple the system. Although these
decoupling matrices are not the only F and G which de-
couple the system, they play a prominent role in design.

The above development served as the intuitive basils
for the definition of the matrix B¥ and for the formulation
of the decoupling theorem, designated Theorem 3.1 below.
Theorem 3.1 has been proved by Falb and Wolovich (1967 a),
and in a different manner by Gilbert (1968),

Theorem 3.1 ILet B* be the m X m matrix defined

in Equation 3.37. Then there is a pair of

natrices F and G which decouple the multi-

variable system described by Equations 3.1 and

3,2 if and only if B* is nonsingular. Further-

more, if the pair F,G are a decoupling palr,

then G = B* L) where the m x m matrix (L

1s diagonal and nonsingular.

Theorem 3.1 provides a simple test for determining
whether or not a system can be decoupled by state variable
feedbacks. The condition 1s more restrictive than the con-
dition for decoupling with Configuration II design (where
F and G are not constant matrices but could be frequency
dependent), discussed in the previous chapter. There the-

requirement was that the plant matrix P(s) be nonsingular,
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Gilbert (1968) finds a particular system in which P(s)
is nonsingular but B* is singular. For that example,
Configuration II deslign permits the decoupling of the
system while state variable feedback design does not,
In fact, Gilbert indicates that if B¥* is singular but
P(s) is nonsingular, then staﬁes can be always added to
the system in such a manner that the new system can be
decoupled by state variable feedback.

Several dlsadvantages are present when FP#* and G*
are used for decoupling the multivariable gystem. As
Equations 3.37 and 3.41 indicate, the transfer function
for the ith subsystenm 1is

ZLES) o1 42
Ty (8) gdi+l >

This equation indicates that the subsystem gain has been
made unity and that d4+1 of the suﬁsystem poles are at the
orlgin.. These are highly impractical features. Not shown
explicitly are the cancellations of the subsystem zZeroes
by subsystem poless such cancellation 1s an inherent
characteristic of the use of F¥* and G¥%,

Falb and Wolovich shbw that subsystem galin can be
added and the d1+1 poles not used for cancellation of the
subsystem zeroes can be shifted from the origin bylchoosing

FaFe+ B[ Esmkcak] 3443
k=0

G = B"‘-i—n— 3044
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vhere § = maxldy, dpo oo, dy) and the M, are diagonal

matricess ioeo,

Flk =] diag[m%ig mgzo o009 mﬁm] 30’4’5
If this F and G are chosen, the equation for y* becomes
g
' k
ye = EMCAX‘S’GJI“ o146
= i 3

so0 that the subsystem transfer functions, after cancellation

of the subsystem zeroes, ars of the form

yi(s) Cl)i
—— = = T 3.47
ri(s) 3di+1 = mg_idisdi = a00 = WmOQ

The transfer function of Egquation 3.47 is the most
goneral subsystem transfer function which can be achieved
by using the results of Falb and Wolovichs it iz not the
most general response which can be achieved by state vari-
able feedback, as the following example, Example 3.1,
1llustrates. Next, Example 3.2 eltes another aspect of
systen behavior which cannot be predicted or fully exe
pPlained on the basis of the theory presented so far.

Example 3,1

Consider the multivariable systern whose block
diagram and state equations ars showm in Figure 3.1i(a)
and (b), respectively, The matrix BY must be found in
oxrder to determine whether state variable feedback can

decouple the system., In thls particular example C1B
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L X, = g4

0 | X
s+l N
<
Y
y 2
i X
u2 im 3
(a) Block Diagram
— — - —] - -
111—] -5 0 0-] xi 7 0 a
g, = |0 =1 o |x| ¢ |20 off?*
e u
- 2
_xi’ _0 0 24 _23_ i 0 %_
(]
X
¥y i 0 0 i
= X5
1) 0 i i .
3

(p) State Variable Representation

Figure 3,1 Example 3.1
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u

7 0
cuB=1[1 0 o0)|10 o0} cB=1L0
o 1
= [7 o] = {10
1
7 0 -1 7
B¥* = B¥* =
10 1 =10
7
(c) Test for Decoupling
-5 0 0
cia=f01 0 0ol 0o -1 0] Ca=10
0 0 2
= {-5 0 0] = [0
-5 0 0
A% =
0 -1 =2
Ll oll-5 o o
F* = B 1A% = -
110 4 0 -1 -2
7
G¥ = B«—"l

(a)

Calculation of F¥* and G¥*

\1'3 ~Jpn

Figure 3.1 Example 3.1 (Continued)
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s$s+12 0 _l
s2(s+1)
H(s,F*,G*) = _8(s+1)
i o 82 (s+1)

(e) H(S.F*,G*)

+1) (s+2-f 0
H(s,F,G) = 78y (o¥1) (s32-025)
0 8250 (8+5) (5+1-10f 45 )=7f4, (s+1) ]

[ (8"‘5) (S+1-10f12 )'7f 11(8“‘1 ) ] (8+2'f23)

(r) H(s,F,G)

Figure 3.1 Example 3.1 (Continued)
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and C,B are both nonzero (ses Figure 3.1i(ec)) so that, in
conformity with Eguation 3,29, d4 and 4y are 0. The
matrix B? ig, according to Egquation 3.31,
C4B
B% = 3,48
C2B
As Figure 3.1(c) shows, B* iz a nonsingular matrix and so
the system can be decoupled,
Figure 3.,1(d) illustrates how the matrices F# and
G* are formed, As an intermediate step A% is found by
using the equation
C4A
A% = 3.49
Coh
vhere, accoxrding to Eguation 3,29, the power of A in the
expression for each row of A% is 1 because d4 and d are
both 0. The decoupling matrices F* and G* are calculated
accoxrding to Equations 3,39 and 3,40; the calculations are
shown in Figure 3.1(d). Figure 3.i(e) gives the trans-
mission matrix H(s,F%,G*), relating the input r to the
output y. Here, the cancellation of subsystem zeroes
discussed previously is shown. After cancellation, each
subsystem has the transfer function %g in agreement with
Equation 3.42.
At this stage there is no way of telling how the
factor SX1 1n each of the diagonal elements of H(s,F¥,G%)

s+1
cane about. It appears that in either subsystem 1 or
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subsystem 2 or in both, a subsystem zero is being
canceled by a subsystem pole at the same location, but
the use of F¥ and G¥ does not allow the identification
of the specific subsystem or subsystems containing the
zero. This feature is a drawback of the approach of
Falb and lWolovich because zeroes influence the system
response and one usually wants the option of retalning
them or canceling them, whichever results in the better
response.,

The most general transmission matrix for this
problem was worked out by the brute force method.1 That
is, H(s,F,G) was calculated for a completely arbltrary F
and G and then the criterion of noninteraction was imposed.
The result is shown in Figure 3.1(f). A careful look at
the diagonal elements of H(s,F,G) reveals that subsystem 1
has arbltrary galn, a zero at s = =1, and two arbltrary
poles; thus there 1s a zero in subsystem 1 which need not -
be canceled, Subsystem 2 has arbltrary gain and one arbi-
trary pole. The use of F¥ and G¥ has caused the zero in
subsystem 1 to be canceled, Subsystem 2 has no zeroces.

The most general form of response which can be
realized by the methods of Falb and Wolovich is found
by using the F and G of Equations 3.43 and 3.44. In this

1, Falb and Wolovich (1967 b) give another method
for carrying out the procedure., However, it is difflicult
to apply. Still snother method is discussed in the
following section,
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cagse the subsystem transfer functions, after cancellation,

are

vile) @
ri(s) s - mj 34350

yo(s) - Wy
ro(s) s - mgz 3.51

where mgl and mgz are the arbitrary diagonal elements of Mb.
Again, the zero in subsystem 1 has been canceled so that
only a first-order response can be achieved,

A type of behavior which has not yet been
encountered is illustrated by the following example, taken

from Falb and Wolovich (1967 b).

Example 3.2

Conslder the system whose block diagram and state
equations are shown in Figure 3.2(a) and (b). The most
general F which decouples the system and the corresponding
transmission matrix are shown in Figure 3.2(c). Here each
subsystem transfer function has the factor %E% even for
the most general F, In this instance state variable
feedback cannot stabllize the system.

This particular example is uncontrollable (Kalman,
1960), but even for controllable systems there are
examples in which some of the roots of the characteristic
polynomial are not effected by state variable feedback.
If any such roots are in the right half plane, then the
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1
u ——— x
1 g8=1 3

(a) Block Diagram

— |" b
F; 1 1 0 1
. 1 1 -1
x=/0 1 O|x+|1 Olu ya= x
o 1 0
o O 1J 1 o0
= - —

(v) State Equations

o ¢ £
P a 12 13
fa1 fpp =1-f,,
(3"1) (8"f12~f13-1) 0

H(g,F,G*) =
0 (s=1(a-fqp-1)

(s-i)(s-flz-i)(s-riz-flj-l)
(c) Transmission Matrix

Flgure 3.2 Example 3.2
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nultivariable system is unstable and cannot be stabilized
by state variable feedback alone,

The features of Falb and Wolovich's work can now
be summarized, First, the authors give a test that de-
termines whether or not state variable feedbzck can de-
couple the multivariable system; this test is highly
useful and practical because it can be programmed readily
on a digital computer. Second, they give easily programmed
formulas for particular F and G matrices that decouple
the system: The use of thess matrices precludes ever
having uncanceled zeroes in any of the subsystems; thelr
use does allow the specificationAof d1+1 poles of each
subsystem, but the remaining subsystem polses are used for
canceling the subsystem Zeroes. Third, Falb and Wolovich
characterize the class of all G matrices in Theorem 3.1
and describe in their papers a cumbersome method for
characterizing the class of all F matrices which decouples;
with this information they show the class of compensated
systems for several simple examples, Finally, as Example
3.2 indicates, state varieble feedback does not in every
case permit the stabilization of the system.

The Work of Gilbert
Consider the possibility of decomposing the

uncompensated multivariable system into m subsystems which
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have static coupling between each possible pair. Such a
canonical decomposition would be useful if it wers pos-
slble to achleve because thon one could conceive of &
deslgn procedure in which part of the compensation was
used to compensate the subsystems to give the desired re=
sponse, and the remalning part of the compensation was
used to destroy the coupling between subsystems. The
logical way of achleving this structure is through a
change of variables. However, even though many canonical
forms are avallable for multivariable systems (e.g.,
Luenberger (1966) and Asseo (1968)), none has been found
which accomplishes the desired results,

Concelved in the light of the above discussion,
the approach of Gilbert (1968) involves decoupling the
system first, and then a canonical form is sought. This
two~step procedure 1s not equivalent to a change of vari-

ables (because the decoupling process changes the systenm

dynamics) although a change of variables is involved in the

‘procedure.

Gilbert's concept of an Integrator Decoupled (ID)

system 1s needed,
Definition 3.1 A multivariable system is
Integrator Decoupled if B¥* = /A 0 where /L
is diagonal and nonsingular, and CiAdi*i = 0,

1 =1, 23 sooag Mo
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A speclfic example of an ID system is the system which
results when Falb and Wolovich's F* and G* are used for
decoupling, In fact, in this text the term ID system
always means the particular ID system resulting from the
use of F* and G*, The proof that F* and G¥ lead to an
ID system 1s given in Gilbert (1968), where it is also
shown that the subsystem transfer functions for any
Integrator Decoupled system are of the form

yals) Ay

sdi+1 1= 1' evey 3.52

ry(s)

Suppose F* and G* are used for decoupling the
multivariable system; since the system is now decoupled,
one might conjecture that it 1s possible to find a set of
state varlables in which the fact that the system is de-
coupled is clearly evident, Thls transformation of vari-
ables was found by Gilbert., Of cdurse. the system of
interest 1s not the ID system but rather the original,
coupled plant, and furthermore the response of the ID
system, as glven by Equation 3.52, is2 not the one that 1is
desired. Gilbert shows that the ID system can be re-
compensated by state variable feedback to achlieve the
desired response, and then the two sets of F and G
matrices can be used in finding the compensation matrices
for the original system which give the same transfer matrix

frem r to yo The formal development of these ldeas follows.
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Let s[A,B,C] represent the multivariable system
defined by Equations 3.1 and 3.2, and let [F,G] be the
control law or set of state variable feedback compensation
matrices for sf{a,B,CJl.

Definition 3.2 The multivariable systems

s(A,B,C] and S4{A4,B4,C1] are control law

equivalent (CLE) if a one-to-one corres-

pondence between [F,G] and [F4,G4] can be

found such that for this correspondence

H(s,F,G) = Hy(s,F4,G1), where H(s,F,G) and

H4(s,F1,G1) are the transmission matrices

relating the output y to the input r for

systems S[A,B,C] and S4[A4,B1,C41],

respectively.

In the present case S[A,B,C] represents the
original system and 54[A4,B,,C] represents the ID system,
found by compensating S{A,B,C] with [F*,G*]. The state
equations for S[A,B,C] are the familiar ones of Equations
3.1 and 3.2, The equations for Sq[A4,B1,C] are

; = (A + BF*)x + BG*u 3.53

y = Cx 354
Expressions for F* and G¥ are given by Equations 3.39 and
3.40, When these expressions are used in Egquation 3.53,
the equation becomes

x = (A - BB*~1a%)x + BE¢~1y 3.55
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Suppose Fq and Gy are the matrices used for
compensating the ID system so that it has a transmission
matrix which meets the design specifications. The control
input for S;[A{,B4,C] is thus

u = Fyx ¢ G4 3056
and Egquation 3,55 becomes

x = (A - BB 1A% + BBO~1F,)x + BBe~lgyr 3057
The corresponding expression for SL[A,B,C] is

% = (A4 EF)x ¢ BGr 3,58
The systems S[A,B,C] and 8,[A,,B,,C] will have identical
responsges if Equations 3.57 and 3,58 are identical. This

requirss that

Fe Bﬁ"i(F1 - A%)
= Be~lp, ¢ Bo 3059
G = Bﬁ°1G1 3,60

By this development it is established that one can work
with either the original system or the ID system and still
retain the same design freedom, Gilbert chose to work
with the ID system because it is decoupled,

The canonical form to which the ID system can be
transfoxmed is now discussed. Only the case of controllable
systems (Kalmen, 1960) is treated although Gilbert con-
sidered both controllable and uncontrollable systems,

Almost 2ll practical systems are controllable (Schultz

and Melsa, 1967), and state variable feedback never causes
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loss of controllability (Brockett, 1965); these twe facts
justify the decision to omit the discussion of uncontrollable
systems.
There are two parts to Gilbert’s csmnonical foxm.
First, the 4, B, and C matrices must have the fora shoim
in Figure 3.3(a); the system is now sald to be in Stendaxd
Decoupled (SD) form. The diagonal nature of the upper
portion of the A snd B matrices and the left half of C
permit the identification of m decoupled subsystems, and
it is shown later that the submatrix Ag+1 is important in
accounting for the peculiarities of the type discussed in
Example 3.2, If the subsysten exhibits the additional
internal structure of Piguxre 3.3(b), 1% is sald to be
Canonically Decoupled (CD).
The ID system and the CD system are related by
a2 linear change of variables. Let the respective state
variables be x and 2, These variables are related by the
nonsinguler matrix Q, as
2=Qx 3,61
The transformation matrix @ is found as follows.
Let € denote the n-dimensional space of n-element
row matrices, and for i = 1; c..p, m, define
d = [ Qi€ ATB = 0 for k= 1) coop mo k7 1
and-j = 05 coop m = 1] 3062
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A11 0 [ N ) 0 O
0 Ay e 0 O
: : : Aii is ny x ny
) ) ) Ag ilsn,qxn
0 0  eee Ay O +1 -
Cc (o] [+
LA&‘ Az cee Am +1
— -
311 0 (XX} 0
0 Byo vee 0
: : Bygy 13 ny x 1
) ’ BY 1s x1
O o [ I ] %m g nm+1
C C
Bf By ... By
L —
- ]
C11 0 PP 0 0
O C22 [ X N} 0 0
. . . . Cii is 1 x ni
Lo 0 [ X N ] Cmm 0

(a) Standard Decoupled Form

Figure 3.3 Canonically Decoupled
System Repreésentation
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0 I _1
o o 0 I1s d4 x dy
Ay = Y; 1s 1, x (4,+1)
Yy &, $1s 1, x 1,
__ —
0
0
Byy = : /Ci isry x 1
7&
A

cil = [1 0 ess 0]

(b) Canonically Decoupled Form

Figure 3.3 Canonically Decoupled
System Representation (Continued)
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where Bk is the kth column of B, The numbers n, and 119
vwhich ars needed in the definition of the CD representation,
are defined by

ng = dim 3063

1 =1 oo00p B

1, =ny -4y =1 3.6k
The number ny is the number of poles of subsystem 1 which
can bo controlled by state variable feedbacks 11 is the
number of fixed zeroes of the subsysten,

The transformation matrix @ is written as

Q4 i
as . 3,65

| Omed
where the rows of the ny; ¥ n matrix Q, 1 = 1y oo, my are
& basis for Qio The first di¢1 rous of each of these Qi

are chosen to be Cy, Cily ooa, CiAdi

end the last n - 44 = 1
rous are any other linearly independent row vectors which
make the set of rows of Q3 & basis for . For Qu.q, the
rows are chosen so that the collection of rows of Q form
a basis for &

The state equations for the ID system are

-]

< (A + BF¥)x 4+ BG%u 3,66

L}

y = Cx 3.67

= Qx, these equations become

K>

After substituting

56




$ = q(a + BF*)Q 'x + QBO*M - 3.68
vy = CQ'1§ 3.69
Gllbert proved that the matrices Q(A + EF*)Q~1, QBG*, and
cq~! nave the structure required for the CD system -
representation.
Some familiarity with the transformation can be

gained by finding the CD representation for Example 3.1.

Example 3.3

The state varlable representation 1s shown in
Pigure 3.,1(b) and the F* and G* appear in Figure 3.1(d).
These equations and matrices are needed to calculate the

ID representation

x = (A + BF%)x + BG*u 3,70
— —
0 0 dj i dw
=32 . 10
5 1 O] x+ = 0lu
_50 10
=7 1 QJ |~ 14

1 0 0
y = x 371
0 1 1
Once the ID representation has been found, the
calculation of the transformation matrix Q can proceed,
The first step in calculating Q is the characterization

of the subspaces of @ For @j Equation 3,62 becomes
@ = (717498, =0, §=0, 1, 2] 3.72
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Let the row vector /) be ( 1y, s 43)e Then

NBy = 73=0

4By = €

7428, = 0 3473
Thus

di = [’Z}? = (71’ 22’ 0)] 3. 74

By definition the rank of @4 is ny, or, for this example, 2.
The same procedure can be carried out for the subspace Qé.
to yleld

& =L071%7 = (0, 720 72)] 3.75
The rank of Q, 1s 1; hence np 1s 1. For this example the
dimensions of ¥, and @ add up to the dimension of g, and Qé
is not needed.

The matrix Q is composed of Q4 and Q. Since dj
and d2 are both 0, the first row of Q4 1is Ci, the first
Tow of the output matrix C shown in Figure 3.1(b), and
the first row of Q is Cz. The second row of Q4 can be
any row vector which 1s lndependent of 01 and which
belongs to the subspace Qj. Choose the row vector

(0, 1, 0). Thus Q is completely defined, as

1 o0 o
Q=10 1 © 3.76
o 1 1

and Q'1 ig found to be
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"l =]o 1 0 3077

The system matrices in CD form are found by using the
system matrices for the ID system and the above transfor-
mation matrix, and performing the computations reguired

in Bguations 3.68 and 3.69. The results are shown below,

[0 o } 0|
1
A=q(a+ BFr)Q-l = 0 4 o 3,78
[0 04 0
1 ! 0|
A .
B=QBG*=1—3: 0 3479
—— e —
| 0t 1 |
A 4 [t ol oo
C=0CQ " =2 |--= ——— }—--- 3.80
0 0 1

Note that these matrices satisfy the requirements for the
CD representation given in Figure 3.3(a) and (b).

The partitioning in Equations 3.78 - 3.80 is
used in illustrating what matrices are assoclated with
each subsystems The two distinct subsystems for this

example have the state equations
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. 0 0 1
gl o 215 ul 3,81
50 10
7 7
yi=[1 o1&} 3.82
22 = [03%% + (11° 3.83
y? = [11%2 3,84

The superscripts do not represent powers but are used to
indicate a partitioning of %, y, and u into two diejoint
parts, each of which is associated wlth one of the systems,

The CD representation is the means by which each
subsystem is identified and isolated in a manner that
permits the application of the results of state variable
feedback as it is formulated for single-input, single-
output systems, This is showm clearly in the previous
example, The identification of a set of open-loop transfer
functions of the ID system is now possible. In terms of
the CD representation of the ID system these transfer
functions arse

pyq(8,F#,G#) () = Cqy(sI - Ay4) 1By, 3085
where pyq(s,F*,G*) is the ith diagonal element of the
nonsingular, diagonal transfer matrix P(s,F%*,G*), relating
the output y to the control input u of the ID system. It
may be helpful to recall that P relates y to u end H

relates y to r.
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These open-loop systems are to be compensated by
A A
the control law [F,G]. Gilbert shows that F and G pre-

serve noninteraction if and only if they have the forms

91 0 F'E-X) 0 0
A O 62 oGO 0 0
Fa|, ° s ® 3.86
(] Q -] 8
0 0 6, ©
where each 6, is a 1 x n4 matrix, and
A
G =_A= diagl 24y eees Appl 3.87 .

The important point is that when compensating the
multivariable plant, one need only integrator decouple the
system and then change variables to get the canonically de-
coupled form; from then on each subsystem can be treated
separately. The transfer function for the ith subsystem
is given by Equation 3.85. In keeping with the results of
state variable feedback for single-input, single-output
systems (Schultz and Melsa, 1967), all n; of the subsystem
poles can be arbitrarily placed, but the 14 zeroes of the
open-loop system--given by the numerator of Equation 3,85~
are not affected by state variable feedback,

Gilbexrt shows that the zeroes of the ith subsystem
are the zeroes of the equation

det(sI - ;) =0 3.88

where, according to Figure 3.3(a) and (b), éi is an
1, x 11 submatrix of A4y, the system matrix for the
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ith subsystems The poles of the subsystem are deduced by
using the previously noted fact that the ith subsystem of
an ID system has d1+1 poles at the origin and its remain-
ing poles at the locations of the subsystem zeroes. Let
Pi(s,F*,G*) be the characteristic polynomial of the 1ith
subsystem of the ID system; then

pl(s,F*,G*)

det(sI = Ay4)
sM*lget (51 - @1) 1=1, seep m 3.89

When the control law [F,G] is used for compensating the ID

gsystem, all ny poles of each subsystem can be moved from
the locations determined from Equation 3.89 to arbitrary
locatlions. m

Ir f§1n1<=n. there are additional roots of the
characteristic polynomial which are not accounted for by
Equation 3.89. These roots are the zeroes of the poly-
nomial det(sI - Am#l,m+1)‘ they are not affected by state
variable feedback. Thus, q(s,F,G), the charac;eristic
polynomlial of the compensated ID system has fza ny roots
which are controlled by F and G; and, in addition, the
factor det(sI = Ap4q,m+1) is present. The presence of
the additional factor in q(s,F,G) is detected during the
completion of the procedure for finding the transformation
matrix Q because 1f ;Tyny<n, then n .4 #£ 0, Q;+1 ¥ 0, and
Aneq,me1 # 0, Since the factor is not affected by [ﬁ,é].
the system is unstable if any of the roots of
det(sI - Ap,g 14q) 8Te in the right half plane.
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This 1s an appropriate place to state Gilbert's
design procedure. First, the given multivariable system
1s tested for decoupling by applylng Falb and Wolovich's
criterion that B* be nonsingular, If the test is success-
ful then the system 1s integrator decoupled by using F*
and G*, Next the matrix Q is found and used to change
variables and transform the system to Gilbert's canonically
decoupled form. Now there are m subsystems, the ith sub-
system has 1 fixed zeroes and ny poles which can be
arbitrarlily placed by state varlable feedback. The
characteristic polynomial of the system consists of the
product of the characteristlc polynomials of each of the
subsystems and, in addition, the factor det(sI = Apyq meq)
is present. Once the individual subsystems have been com-
pensated, the matrices ? and e'are completely determined.
The corresponding compensation matrices in texrms of the
original system variables are

F = F* + B+~ 1fq 3490
¢ = p+1¢ 3.91
These formulas are the result of the application of the

transformation matrix Q and Equations 3.59 and 3.60.

Example 3.4
The system of Example 3.1 again provides a
convenlent means for illustrating the design procedure.

The CD representation is given in Equations 3.78 - 3,80,
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The two subsystems for this example are found by using
Equation 3.85. They are

P11(s,F*,G*) ﬁ{%ﬁ 3.92

Y [=S

pzz(s,F"’gG*) 3093

Subsystem 1 has a fixed zero at s = -1 and two poles which
can be arbitrarily placed. Subsystem 2 has one arbitrary
pole. Suppose it is desired to achieve the following

A A
transfer functions by the proper choice of F and G,

ARA 2(s+1
h = R
11(s,F,G) ;2{55;% 3.94
A A
hy5(s,F,G) = '5-.1-—1' 3095
N
Techniques for calculating the F and @'that result in a

given H(s,@,e) are discussed in Chapter 5, Here the re-
sults for this example are merely written down because
this particular system 1s treated again in Chapter 5 as
Example 5.1. The compensation matrices for the ID system

in terms of the state variables of the CD representation

+ %% ° |z o
= G = 3096
0 0 =1 0 1

are
13

The corresponding matrices for the original system, found

by substituting in Equations 3,90 and 3.91, are

% w °

2

7
8 1 20 397
- & 1 = 1
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A block dilagram of the compensated system appears in
Figure 3.4.

The procedure for characterizing the class of all
F matrices which decouple is now discussed and illustrated
for Example 3.4, '

When the system is in CD form, the only F matrix
which decouples is %, given by Equation 3.86. For the

current example, ny = 2 and n, = 1, so that
AL 611 O, o 3,98
0 0 S5
The corresponding F for the original system is found by
using Equation 3,90, After the matrix calculations have
been performed there results '
%*% ©11 71;'612 0
Fs 3.99
-10(‘;%% 9,,) 1-1% Oip+ 6p5 2+ 64
The work of Gilbert described in this section is
notable for its completeness. If the multivariable system
can be decoupled, then his work provides a means for de-
termining the form of each component subsystem. In parti-
cular, the number of subsystem zeroes and the number of
poles are known; and, just as in single-input, single-
output systems, state variable feedback allows the
arbltrary placement of all the subsystem poles, but the
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Compensated Systenm

of Example 3,
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zeroes remain unchanged. A step-by-step design procedure
is given in Chapter 5.

The computations required in finding the ID systenm
and the CD representation are tedlous if performed by hand.
Thus the digital computer is an indispensable aid. More
1s said about the computational aspects in Chapter 5.

Here, it is sufficlent to note that explicit formulas are
characteristic of this sectlon, rather than iteratlve
methods. This means that the programming job 1s simplified
since much of the task consists merely of re-coding formulas

in a form that is acceptable to the computer.

Sumnary
In a sense, the state varlable feedback technique

has been described from start to finish. The original work
on the design technique 1s described in the early sectlons
of the chapter. The research described subsequently has
caused the original work to be relegated to a position

of historical value only. Somewhat the same remark applles
to some of Falb and Wolovich's work. However, thelr test
for decoupling is highly useful and the matrices F* and G*
are basic in Gilbert's worke.

Gilbert provides a complete theoretical treatment
of the state variable feedback problem., His theory de-
seribes the limitations of state variable feedback by
providing explicit formulas for determining the speclfic
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form of cach subsystem of the compensated system. He also
gives an analytical explanation of the situation where
state variadble fegedback alone does not provide control
over all the roots of the characteristic polynomial.,

At least two problems yet remain. The first
Problem arises when state variable feedback alone does not
allow the designer snough freedom to achieve the requlred
system response. For example, suppose & third-order sub-
system with one zero is necessary for a satisfactory re-
sponse, but the system 1s capable of only a second-order
response. If the system has one input and one output, the
solution to this problem would be to add a lead-lag
compengsator., For the multivariable system a similar
technique 1is aﬁplicablea The second problem is the com-
putational problem. For a given cholce for the transfer
matrix of the compensated system, how does one carry out
the computations required to find F and G? Both compu-
tational aspects and additional compensation are discussed

in the next two chapters.
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CHAPTER &4
SERIES COMPENSATION AND STATE VARIABLE FEEDBACK

In the previous chapter the limitations of state
variable feedback are discussed. The use of Gilbert‘'s
canonically decoupled representation of the integrator
decoupled multivariable system makes ayailable the option
of treating the system as a collection of m single~input,
single-cutput subsystems. The ith subsystem of the inte-
grator decoupled system has 1; zeroes and ny poles; by
applying state variable feedback to the multivariable
system all the subsystem poles can be placed arbitrarily,
but the subsystem zeroes remain fixed,

There are deslgn problems in which state variable
feedback alone does not offer enough flexibility to mest
the performance specifications., Usually theses situations
arise when zeroes are required in the transfer functions
of one or more of the subsystems of the final, compensated
system. The primary reéson for wanting zeroes in & closed-
loop transfer function of a single-input, single-outpui
system 1ls that thelr presence makes it possible to achieve
an infinite velocity~-error coefficient, or zero position
error for ramp inputs (Truxal, 1955; Schultz and Melsa,

1967). Zeroes which are an inherent part of the plant,
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or fixed portlion of the system, are usually at undesirable
locations, and so additional zeroes must be added. For a
single-input, single-output system, series compensation 1is
added to realize the required zeroes; similar techniques
are developed in this chapter for multivariable systems,

Three methods are discussed for inserting additional
dynamics into the subsystems of the multivariable system.
The first technique, Method A, 1s directly anslogous to
the procedure used in the single-input, single-output case.
Basically, it requires that the multivariable plant be
augmented by inserting compensation networks in the control
input channels and that all the states of the resulting
augmented plant be fed back. An example is used to show
that Method A does not apply in many design problems be-
cause it is not always possible to decouple the augmented
plant. Another example shows that even when Method A is
applicable, there are serious problems associated with 1its
usee.

In Method B the plant is first decoupled, and then
the series compensation 1s added in the control input
channels of the decoupled plant. No additional feedback
18 needed from any of the states of the resulting augmented
plant, In particular, the compensator states are not fed
back so that parts of the final, compensated system have
no feedback at all; and noilse and sensitivity problems may

be present, In both the matters of utility and the amount
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of attention given in this chapter, Methods A and B do
not deserve equal ranking with Method C; rather, they are
best considered as steps along the path to the most
general technigue, Method C,

Method C is similar to Method B in that the plant
is first decoupled before the series compensation 1s added
in the control input channels of the resulting decoupled
plant. But now, state variable feedback is used againg
and this time all the states of the augmenfed plant, ine
cluding compensator states, are fed back around the aug-
mented plant as the final step in the design. This method
represents the ultimate in state variable feedback design
because through its use the designer has the greatest
freedom in achieving the response required for each of the
subsystems of the final, compensated multivariable system.

It is proved in this chapter that, when the zeroes
and poles are added in the manner prescribed by Method C,
the zeroes appear unchanged in the proper compensated
subsystem transfer functions. Furthery all the poles of
the augmented plant are arbitrarily positioned by the
final application of state variable feedback., The proof
of this central result requires the formulation and proof
of several intermedlate results, Some of these interme-
diate steps are generalizations of theorems and lemmas

proved by Gilbert (1968).
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Gilvert mentions the problem of augmenting the
multivariable plent in such & manner that it could be de-
coupled, but no work has besen reported on the specifie
problem of augmenting the multivariable system for improve-
ment in responss., Except whers explicitly stated to the
contrary, the procedures, theorems, and discussions

presented in this chapter ars newo

Hethods for Series Compensation

In this section three methods are introduced for
providing more flexibility in system design than that
available through the use of state variable feedback alone.
Methods A and B are discussed in greater detail than
Method C because this section is the only one in which the
former are considered; Method C is discussed in full detail

in the succeeding sections of this chapter.

Hethod A

Method A consists of three steps. First, the
subsystem transfer functions of the integrator decoupled
(ID) system are identified with the ald of Gilbert's
canonically decoupled (CD) representation. At the comple=
tion of this step, one learns the location of the fixed
zZeroes and the number of subsystem poles. If the deslgn
criteria can be met by merely adjusting the galins and the
poles of each subsystem, then state variable feedback alone

can be used to design the system. If the form of any of
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the subsystem transfer functions does not permit the system
response speciflications to be achleved, then series come
pensation is needed; and it is necessary to proceed to

the second step of Method A.

The second step 1s the insertion of compensation
networks into the control input channels of the multi-
variable plant. The question of exactly what form of
compensation to insert cannot be answered a priori; there
is no guarantee that in the final, compensated system
zeroes inserted in the control input channel will appear
in the proper subsystem transfer function, or even at all.
An even more serious difficulty is that the type of com-
pensation being described could lead to the loss of the
ability of the system to be decoupled by state variable
feedback, However, series compensation networks with the

.desired zeroes are added in each of the linput channels, as
needed. The assumptions are made that decoupling is still
possible and that the zeroes which have been added will
appear in the proper subsystem transfer function after
state variable feedback,

The final step of the design procedure requlres
that the two assumptions made above be tested., First, can
the system be decoupled, or is B¥* nonsingular for the
augmented plant? Second, do the subsystems contaln the
desired zeroes that are to apvear in the closed-loop

system? If these assumptions are indeed valld, then state
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varlable feedback is used to alter the subsystem poles
and to introduce gain to meet the specifications. The
following two examples are attempts to apply Method A,
Both attempts fail and by doing so illustrate the two

basic deficlencies of Method A,

Example Ls1. The plant of Exemples 3.1, 3.3, and
3.4 is again used. It is already known from Equations
3.92 and 3.93 that subsystem 1 has a zero at s = -1 and
two arbitrary poles, and that subsystem 2 has no zeroes
and one arbitrary pole. Assume that the specifications
require that in the final design both subsystems have
third-order responses. For simplicity, no attempt 1s made
to add any zeroes.

An appropriate choice for augmenting the plant is
shown in the block diagram of Figure 4.1(a) (the block
diagram before augmentation appears in 3.1(a)), and the
state equations are shown in Figure 4.1(b). A straight-
forward calculation shows that d4 and 4 are both 0 and
that B* is given by

7 0
B* = k.1
i0 O
Clearly B* is a singular matrix, and so the multivariable
system cannot be decoupled by state variable feedback.
This example demonstrates that situations may arise where

the addition of serles compensation violates the assumptlion

of decoupling.
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Example 4,2, Consider the augmented plant whose
block dlagram and state equations are shown in Figurs
h,2(a) and (b), respectively. In this example an attempt
is being made to introduce a zZero at 8 = =3 in subsystem 1.
In order to find out whether the zero does appear in the
subsystem, the CD representation for the integrator de-
coupled augmented system must be found. Then the transfer
functions for its two subsystems can be found., The sub-

system transfer functions for the CD system are

*) = g+l
P14 (s,F*,G¥*) Z(or1) b,2
Poo (8,F*,G*) = i{ 4.3

The characteristic polynomial for the system is
p(s,F*,G%) = s¥(s+1)(s+3) 44
The only place the factor (s+3) appears is in p(s,F¥,G*), As
Equations 4,2 and 4,3 show, neither subsystem can ever have
a zero at s = -3, and so the attempt to add a zero has
falled,

Examples 4.1 and 4.2 1llustrate the two deficiencles
of Method A, In Example 4.1 it is shown that augmenting
the plant in the prescribed menner could lead to loss of
coupling. Example 4.2 shows that even when the augmented
system can be decoupled, there is no way, except trial-and-
error, of knowlng what to insert in the input channels 1in

order to make the subsystem have the requlired form.
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Apparently some types of transfer functions can be
inserted in the control input channels without losing the
abllity to decouple, while others cannot. The case where
first-order series compensators are added is now discussed.
This case 1s important because it 1s fregquently deslired to
insert a first-order compensator containling one pole and
one zero in one of the subsystems so that the zero can be
used to increase the veloclity-error coefficlent of the
subsysten.,

Consider the most general first-order series
compensator shown in Figure 4.3(a). If both e and E are

non-=zexro, then

u s - &8
and the transfer function has a zero at 25—5—9 . If ®
e

is 0, & pole is being added in the control input channel;
if 5 is 0, galn is being added.

Figure 4.3(b) and (c¢) show two examples where
flrst-order compensation has been added to the control
input channels of the plant of Example 4.1, In both cases,
B* is singular, and the abllity to decouple has been lost.
These examples show that even when flrst-order series com~
pensation 1s required, the use of Method A could lead to

loss of coupling.
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There are two speclial cases of first-order series
compensation which preserve decoupling; these are embodied
in the following theorem.,

Theorem 4,1 Let the multivariable plant

; = Ax + Bu
y = Cx

be compensated by the first-order serles

compensation
& - . - .
x = Ax + Bu
u=X+ B

where K, ﬁ, and Earem x m diagonal matrices

having the respective diagonal elements &ii,

Pii, eand @34, 1 = 1, +eey, me In addition,

assume that B is nonsingular. Then, provided

that the origlinal plant can be decoupled, the

resulting augmented multivariable plant can

be decoupled if

(1) Ei1s 0

or (i1) E is nonsingular
Proof. The theorem is proved by finding the matrix B¥ for
case (1) and then for case (11); for each case 1t 1s shown
to be nonsingular.

case (1) E=0

Let X = [;:l be the state variables for the system
augmented by first-order serles compensation. It 1s easily

shown that the state equations for the augmented system are
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. |4 B[, |[BE

X = _lx+] _|u 4,6
0 A B

y=I[c ol be7

In order to find ﬁ* the sequence of row vectors

Ei, E;By wens éiidiﬁ is formed. Now since E is 0, B is

0
Just - and
H o
¢,8 = [c o][§]= 0

5 E o : A B o:l _
C,AB = |C 0 - - = C4BB
1 1 o A |B 1

¢,A4%1% = (c;aMB + 481718 + .., + ,B)E
By assumption, B is nonsingular and dlagonal; also, by the
ds =
definition of di’ the terms CiB. CIAB. Y'Yy ClA 1 1B are
zero. Thus in the sequence C4B, C1ABy ey CiAqYB, only

CiAdiB 18 nonzero; 1in fact,

611‘11*1‘;5 = CiAdiB]-B
=BI§ 1 =1, seey m 4,8
or
B* = B*E 4.9

The matrix B* 1g nonsingular because both B* and

B are nonsingular, and the augmented system can be decoupled.
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case (11) E nonsingular
Consider the following sequence

~

~ BE -
CiB = [Ci 0] E = CiBE
RS- '] A B||BE - _
=[c, o _ |l _|=c,aBE + ¢,;BB
i i 0 i 3 i 1

~ 3z ~ - -
¢,0%8 = ¢, a%pF + (c,ad1"?

1 1 B4 00 + CiB)B

Again the terms Cy4B, C3AB, eeey CiAdi'lB are zero and so
-~ -
6,548 = c,aMsE
= B;E I=1, eeeym 4,10
or
f‘l -
B* = B¥E l{’oli

The matrix ﬁ* i1s nonsingular because both B* and E are
nonsingular, and the theorem 1s proved,

By virtue of Theorem 4,1 the only sure way of
adding flrst-order compensators by Method A requires that
every control input channel contains both a pole and a zero,
or that every control input channel contains only a pole.
If this consistency in the choice of first-order compen=-
sators 1s abandoned, then loss of decoupling could result,
as shown in Figure 4.3 (b) and (c). Even when the con-
sistency is maintained and decoupling 1s assured, there 1s
a danger of "losing" the compensator zero. Thils was

observed in Example 4,2 where the zero inserted in the
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control input channel for uq did not appear in the
transfer function for subsystem 1,

Method A is best understood as a trial-and-error
approach, The outstanding feature of Method A is
simplicity, and for some problems it may prove to be
satisfactory. When it does not yield satisfactory results,
Method B or Method C should be used.

Method B

In Method B the multivariable plant 1s decoupled
before additional compensation 1is added in the control input
channels, The steps 1ln the design procedure are

(1) The CD representation of the ID plant is
found and used in determining the locatlons
of the fixed zeroes and the number of poles
for each subsystem.

(2) State variable feedback is used to decouple
the plant so that the resulting transfer
function for each subsystem is by itself
a factor of the desired transfer function
of that subsystem.

(3) Compensator networks are inserted in the
control input channels of the decoupled
plant. The transfer functlion for each
series compensator ls selected so that

its product with the transfer function
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of the corresponding subsystem of the
decoupled plant is equal to the desired
transfer furnction for that subsystems
Here the problems associated with Method A are no
longer present because the plant is decoupled before com-
pensation is added and because there is no feedback around
the compensation, In fact, the chief disadvantage of the
method is that no feedback is used around the series
comnpensation. As a result, the augmented system is sensi-
tive to changes in the parameters in the compensation, and
the system is likely to perform poorly in the presence of
noise. Both of these conslderations are discussed in the
following example,
Example 4.3. The block diagram for the given plant
1s shown in Figure L4.4(a). After completing step (1) it
is learned that subsystem 1 has a zero at s = =2 and two
poles which can be controlled by state variable feedback;
subsystem 2 has two arbitrary poles. Suppose 1t 1ls desired

to achieve the transfer matrix

12§s+52 0
s8+10) (st

H(s,P,G) = 18 .12
0 (s+3)%49

where ﬁ(s,F.G) 1s the transmission matrix from r to y of
the final, compensated system, and F and G are the

compensation matrices for that system.
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The first step toward this end is the decoupling
of the glven plant. Let the plant be compensated so that
as much as possible of the desired transmission matrix is

achlieved, or let

1 0
s+6
P(S’F’G) = 1 4.13
(s+3)249

(Here, P is used instead of H because P(s,F,G) relates y
and u rather than y and r). The compensation matrices
that result in the above P(s,F,G) are

-3 =1 0 0 1 0

F= G =

3 0 =10 0 -1 1
and the block diagram for this intermediate form of the
system 1s shown in Figure 4.4(b)., Now compare the diagonal
elements of the matrices in Equations 4.12 and 4.,13. For
subsystem 1 the additional factor %%é%%?l is needed to
realize the desired transfer function; for subsystem 2
a gain of 18 is necessary. The additional compensation
1s added as shown in Figure 4.4(c).

The deflclenclies of Method B are ciearly evident
from a study of the block diagram of Figure 4.4(c). Any
noise occurring at the points labelled o<, and <<, on that
dlagram passes through the subsystems and appears un-
attenuated at the outputs. Furthermore, there 1is no

feedback around the series compensation networks to reduce

the effects of parameter changes,
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There 1s a variation of the procedure of Method B
that is similar to Configuration II design, discussed in
Chapter 2, State variable feedback and series compensation
ara used to develop 2 set of subsystems such that when the

th output 1s fed directly back to the ith input, the ith
subsystem exhibits the required response., The similarity
to Configuration II lies in the fact that in both cases
the open=loop subsystem must be altered in a manner such
that the closed-loop system meets the deslgn specificatlions,

The advantage of using thls variation of Method B
is that feeding back the outputs insures that there 1is
feedback around both the decoupled plant and the serles
compensation. On the other hand, since the plant states
have already been measured and since the compensator
states are presumably easy to measure, why not feedback
all the states instead of merely the outputs? This is
exactly what is done in Method C,

Method C
The steps in the third design procedure are
(1) The CD representation of the ID plant is
found and used in determining the locations
of the fixed zeroes and the number of poles
for each subsystem.

(2) 8State variable feedback is used to decouple

the plant.
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(3) Based on the knowledge gained in step (1)
and the design specifications, appropriate
compensator networks are inserted in the
control input channels of the decoupled
plant.

(4) state variable feedbaekg including feedback
of the compensator states, is used to add
gain and put the subsystem poles in the
required locations.

The following questions arise. Does the plant
remain decoupled when series compensation is added in the
control input chennels and all the states are fed back?
If so, what can be sald about the form of the subsystems
of the augmented system in terms of the known structure
of the original decoupled plant and the added compensation?

The answer to the first question is reasonably
obvious, There are two ways of determining whether the
augmented system can be decoupled, First, the matrix B¥
can be found for the augmented system and tested for non-
singularity; or second, a particular F and G can be found
which decouples the augmented system. The second method
is by far the easlier one to apply in this case. Before
adding the compensation the plant is decoupled, so that
the matrix P(s) relating y to u is diagonal., Now after
the compensation is added in the control input channels,

the control input uy, 1 = 1, oeey My, is effectively changed
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to pyj(s)u; where Pyj(s) is the transfer function of the
ith compensator., Thus P(s) is replaced by P(s)P(s) and

is still diagonal. Since the new plant matrix is diagonal,
the matrices F = 0 and G = I are a sultable choice for
decoupling the system and so the augmented plant can
indeed be decoupled.

The answer to the second question agrees with one's
expectations. Unlike Method A, in Method C zeroes added
in the compensator networks always appear in the proper
subsystem transfer functions after all the states are fed
back, If the ith subsystem of the decoupled plant has 1l
zeroes and ny poles and if ii zeroes and 51 poles are
contained in the series compensator added in the ith control
input channel, then in the final, compensated system, the
1i + ii zeroes appear unchanged in the ith subsystem
transfer function, and the nj + 51 poles of that transfer
function are controlled by the state variable feedback.

The proof of thls central result 1s the main contribution
of this dissertation,

The proof of the central result stated above
requires several steps, In the following section addi-
tional notation and a precise formulation of the state
equations are given; then in the next section the central

result is proved.
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Decoupled Compensation

It is now necessary to be more precise than
previously in describing the compensation to be placed
in the control input chamnels of the multivariable system.
State variable equations are written to describe the com=
pensation for each channel and then these sets of equations
are combined to glve a8 single set of system equations to
describe all the compensation. Coupling between the
channels 1s purposely omitted and so the term decoupled
compensation is appropriate for describing the compensation
added to the control input channels of the plant,

The state equations for the decoupled compensation

take the form

% = A% + Bu b1k
u=8§+§‘; 4015

where the structure of X and the various matrices is given
in Figure 4.5. The matriz E is needed when a first-order
compensator having both a pole and 2 zero is to be added
to the system because in such a situation the control input
is fed directly forward to the subsystem output; see
Figure 4.3(c) for an example where E is needed.
Recall that the system equations for the original
system are
x = Ax + Bu L.16
y = Cx 4,17
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Let the states of the original sjstem and the decoupled

compensation be combined into the single vector ¥, with

~ X
= | _ 4,18
X

Then the state equations for the augmented multivariable

system are written

¥=13% + B k.19
y = 6% 4,20

In terms of the matrices in Equations 4.14 - 4,17, these

system equations have the form

. |& BC|, |[BE|.

% = _lx+| - |u b,21
0 A B

y=[c 0o 4,22

The control input for the augmented system 1s

2 =% + 6r 4,23
Equations 4.18 - 4,22 provide an exact description of the
multivariable system in terms of the original plant matrices

and the matrices of the decoupled compensation.

Proof of the Central Result for Method C

The purpose of this section is to present the proof
of the central result for Method C. Vhen Method A is used
to add dynamics to the multivariable system, there is a
danger that decoupling is lost and that the compensator
zeroes do not appear in the transfer functions of the

compensated augmented system. For Method C it 1is already
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clear that decoupling is never lost by the addition of
decoupled compensation. The structure of the augmented
subsystems is now discussed and proved to be valid,

The zeroes and the number of poles of the sub-
system transfer functions of the decoupled plant are
presumed known., This implies that the designer has ob-
tained the CD representation for the original, coupled
plant and from i1t has determined the number of fixed sub-
system zZeroces and subsystem poles; then he has used state
variable feedback to decouple the plant and move the
subsystem poles to some known locations. The form of the
subsystems in the decoupled compensstion are certainly
known because they are added to the system by the designer.
The central result (Theorem 4,3) to be shown is that the
subsystems of the augmented plant can be treated indi-
vidually, each having an “"open=loop® transfer function
whose Zeroes are the zeroes of the added subsystem come
pensation and the zeroes present in the subsystem before
compensation, and whose poles are under the control of
state variable feedback, The number of subsystem poles
for the ith subsystem 1s ny + n; and the number of fixed
zeroes 1s ii + 1, where n; and fi; and 1; and ii are,
respectively, the number of zeroes and poles of the

component parts of the ith open loop subsystem.
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The demonstration of the central result requires
several steps, so an outline of the proof is helpful. The
steps are

(1) Show that a decoupled multivariable

plant can always be put in standard form
by a linear change of variables
(Theorem 4.2),

(2) sShow that the central result is true
when a system in standard form is aug-
mented with decoupled compensation.
(Lemma 3)

(3) Show that the system described in (2)
and the original augmented system are
related by 2 linear change of variables.

(4) Show that the two systems are Control Law

Equivalent and thus prove the central
result (Theorem 4.3).

Before the theorem accompanying step (1) (Theorem
b,2) is proved, two subsidiary results are needed. The
required results are propertles of decoupled systems; they
are important because in forming the augmented plant,
decoupled compensation is addéd to a decoupled plant,

Lemma 1 For a decoupled multivariable system

cialB= ¥y,Iy 1=1, cesym § =0, oouy n-1 4,2k

where I; i1s the 1ith row of the m x m identity

matrix and at least one of the m(m X n) numbers
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7”13 is nonzero, Furthermore, the matrix
B%* is diagonal and nonsingular,
Proof. Let P(s) be the diagonal matrix relating y and u
end let P;(s) be the ith row of P(s), Let
p(s) = det(sI = A)
= g? - pisn“i = 000 = Pp 4,25
The expression for P,(s) is
Py (s) = C;(sI - 4)7'B b,26
and the following formula, taken from Gantmacher (1959)
and used by Morgan (1963) and Gilbert (1968) can be used

to calculate P4(s).

Py(s) = [p(S)J'i(ciBsn’i + ciniBsn°2 + ceo + CyR _4B) 4,27

where
R, = 4% - psh - ppl

o

n=1 n=2
Bhog =4 = D4A

Substituting the expressions for the RJ into Equation 4,27

“ oeo0o = pneil 1&028

glves
Py(s) = [p(s)1" e, Bs™ 1 + ¢ (A ~ pyI)Be2 »
C3(h2 - pyA = ppI)Bs® 0 + 440 +
Ci(An"1 - 1>1An"'2 = 000 = Pp.11)B] h,29
Since the system 1s decoupled, P(s) is diagonal
and nonsingular, and

B(s) = py, (s)Iy 430
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where pil(s) is the ith diagonal element of P(s), In
order that Equations 4,29 and 4,30 be compatible, the

following relationships must hold:

n-1,. _
CiAY B = Yy pnoaly b.31

At least one of the }413, 3 =0, 1, eeey n=-1, is
nonzero because otherwise Pi(s) would be O and P(s) would

be singular. In addition, recall that the matrix B¥ is

defined to be _
[ dy
C4A™ B
- 4,32

B¥* = o

o

Cpa°mB _

so that B¥ 1s diagonal and nonsingular, and the proof 1is

complete.
Another property of decoupled systems is given in

the following lemnma,
Lemma 2 For a decoupled, controllable system

the following conditlons are satisfied. (Q;
is defined by Equation 3.62)

(1) Q) is a row invariant subspace of A;

1.6 7€¢1 .’l.mplies 7A6Q,10

97




(2) & NE; =07F0r 15 1) coop My 1 # 3= 1, soo, m
Proof of (1), It is given that 'ZAJBk 2 0, K= 1, 00, my
K# 1, § =0, 000, n=13 1t must be shown that 7AAIB, = 0
for the same set of 1, k, and j. Except for j = n-1 the
proof follows immediately. From the Hamilton-Cayley
theorem (Nering, 1963) AR = inpei * ooo @ul. Premultiply
A" by 4 and post multiply by Bys ZA"B, = q374%1p + ...

+ Qp /Bx = 0. Therefore, (1) is true for all i = 0, 1,

0cog Mo

Proof of (2). Let €@ N &;. Then since 7 is in both @
and Q’,‘?AJBk 2 0, J=2 0p 0asy D=1, k = 1, osoe, Mo Because
of controllability n of the vectors from the set A3Bk, =0,
coo0p =1, kK = 1, c0., m are linearly independent, Let the
columns of the matrix Z be those veetors. Then 7Z = 0, or

Z = 0 because Z is nonsingular,

Lemma 1 and Lemma 2 arc needed in proving Theorem
4,2-=-the first step on the path to establishing the central
result for Method C,

Thooren 4,2 Any controllable, decoupled multi-

variable system can be put in standard form by

a linear change of state variables. (Standard

form is defined in Figure 3.3(a).)

Proof, The matrix @ is defined by % a QX where T areg the
new state variables, in terms of which the matrices

VAl -] A A 1
A= QAQ™*, B= @B, and C = CQ™* are to be in standard form.

The structure of Q is the following
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- [ T

Q i ok

Q= : Qi = :
| w1 Py

where the ]bg. J =1, eesy ny; are rows of the n, X n matrix
Q; and are a basls for Q. The first row of Q;, 1 = 1, .ss,
m, is always chosen to be Cy, the ith row of the C matriz.
This row vector 1s a member of the invarliant subspace Q1
because of Lemma 1. The natrices K, ﬁ, and € are considered
in turn.
(a) To show that Y has the required form. The matrix A
1s assumed to represent a linear transformation 7. Let
the rows of A be the n-tuples which represent the images
of the basis vectors of @, under ¢, Let the rows of Q,
the 3% as defined above, be the sets of n-tuples repre-
senting the new basis of & in terms of the original basis,
In order to find.ﬁ, the image of each )Z§ in terms
of the set of all j%_{ (in terms of [f]{}) must be found.
Consider t?%. Since the vectors in @) are transformed by
7~ back into the same subspace (@4 is an invariant sub-
space by Lemma 2), the first nq rows of 2 must have the
form [A;;, 0 .. 0], where 443 1is an ny x ny matrix.
The second group of rows of \ must take the form
[0 A, 0 .e.e 0] and so on for all but the last

group of rows. Nothing is known about how the vectors 1ln
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Q&+1 are transformed by ¢, so that no special structure
can be ascribed to the last np.q rows of %, Wnen the m+1
groups of rows are put together to form 39 the metrix is
found to have the structure required for the standard form
representation,
(b) To show that B has the required form, Recall that
£ = QB. The first row of B is ;'%B or i fin where

k=1

is the kth column of B, From the definition of €7,
f%Bk = 0 for k # 1 so that the first row of B has the
required form, shown in Figure 3.3(a). In the same way,
the remaining rows of % are found to have the required form.
(¢) To show that C has the required form. Recall that
2 =ca!orfa=cC., Since the f%, i=1, ceoy, m, Were
chosen to be the Ciy 1 = 1, 400, mi C must satisfy the
regquirements for the output matrix of the standard form
representation in order to satisfy the last equation.
The proof of Theorem 4.2 is now complete,
The second step leading to the central result for
Method C is now considered; the requirements of step (2)
are embodied in Lemma 3,
Lemma 3 Augmenting a decoupled multivariable
plant which is in standard form leads to a
deslgn problem in which there are m open-loop
subsystems, each having a transfer function

which is the product of the transfer function
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for the ith subsystem and the transfer function
introduced into ith control input channel. When
state variable feedback is applied, the sub-
system zeroes remain fixed and the subsystem
poles can be placed arbitrarily.
Proof., The requifed result is demonstrated for the case
of two inputs and two outputss Figure 4.6 (a), (b), and
(c) shows the state equations for the original plant, the
decoupled compensation, and the augmented plant,

respectively. Change variables by defining zl = xig

2% = il, 20 = xz, zu = §29 and 25 = xJ, In terms of the
z variables the system equations are
Aqqy B41C11| © 0 o By41€41 0
0 Kll L0 I 0 0 511 0
zZ = 0 0 A22 322822 0 |z + 0 322322 n
0 0 0 Ay 0 0 Bpo
c co ¢ gt c C= Cw
LA1 B{C11 42  ByCz2 A_3J | Bfe1 Byl |
L,33
C11 0 0} 0 0
y - 4034
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A4 O O Byy O
° Ci1
X 0 A22 X + 0 B22 u y =
0
c c c c
A A7 A3 Bf B
(a) Original System in Standard Form
o riii 0| _ F%11 L2 I
X = - X + - u
N A22 | | 0 Bo2
G o], [u o
Ci1 U e11 U
y = - X + - u
| 0 C22 | 0 e22
(b) Decoupled Compensation
— - - —
B9 0 0 ByyCyy O Bi1819
0 Ay, 0 0 BpsC22 0
L] - - c—
x=| A] A A5 B§Ciy B3C,, |x +| Bit1g
o o 0  Agq 0 B1q
LO 0 0 0 oo L 0
Cii 0 0 0 0
y = <
Lp C22 0 0 0

Figure 4,6 Two Input, Two Output System

(c)
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The equations for subsystem 1 are enclosed in boxes in the
matrices above, Let ﬁal(s) be the transfer function for

subsystem 1 which relates ujy and yqo Then

= =1 =
SI—Ali -’Biicii Bl 1611

’511(8) = [Cii 0] _ -
0 sI=A11 B4+
= C,.(sI-A )“'113 [8444Cq4 (sI-A )"113 ]
11 19 Pqqleiq+Cqqisl=-Rq4 i1
= p11(3)511(3) 4935

where p,,(s) is the transfer function which relates u, and
¥4 end By4(s) 1s the transfer function from ug to uge. It
is known from single-=input, single-output theory that the
use of state variable feedback allows all n4 + ﬁi poles
of the system to be placed at arbitrary positions and that
the zeroes of the compensated system are the zeroes of
pli(s)ill(s). Thus the lemme is proved for subsystem 1 and,
in the same menner, for subsystem 2, The proof form > 2
is straightforward.

In step (2) the original system is assumed to be
in standard form. For step (3) it is shown that the origi-
nel system need only be decoupled, The augmented systems
in both cases are related by a change of variables. Let
X be the state variables for the augmented plant in which
the original plant is decoupled, but is not necessarily in

standard form; thus, % = [f

] o The state equations for
X
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this system are given in Equations 4,21 and 4,22 and are
symbolized by S[,B,C]. Let X be the state variables for

the augmented plant in wh}\ch the original plant is in

b'd
standard form; thus _§_ = [
e

Jand the system 1s represented

~ow & M

by §[.A.9§'9.]°
Now change variables in the system S[A,5,8J. Let

Vad
Zz = TX where

T = 4.36

In terms of the z variables, the system 1s represented by

SteEr-1, 78, 611, But

— = -1
v 94 @ o|(a =BC||Q 0
TAT™* = -
o I|]o0 A 0 I
Qaq=l qmc
K A
A A=
A ~
0 A
Similarly,
- e of]|BE QBE |
TB = - = - = _B_ 4038
0 I B B
and
-t o
ér-l=1[c o] =[C ol=¢C 4439
0 I
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This development shows that §[TZT°1. TB, 5T°1] ig identical
with '_S'_[g.ﬁl.év], or that the two augmented plants are related
by & linear change of state variables, and the plants are
similar.

The final step, step (4), leading to Theorem 4.3
is the demonstration that similar systems are control law
equivalent, This particular result is due to Gilbert
(1968); the proof is repeated here for the sake of
completeness.

Let S[A,B,C] and S4[44,B4,C4] be similar systems;
i1.e., the state variables x of the system S[A,B,C] are
related to the state variables v of S4[44,B4,C4] by a non-
singular transformation matrix T4, as v = Tyx. For
8{4,B,C] the transmission matrix after compensation by
state variable feedback is

H(s,F,G) = C(sI - A - BF)"'ng I, 140

Control law equivalency between S[A;B,C] and
Sq[A4,B1,C4] will hold if en F4 and a G4 can be found such
that Hq(s,F4,G4) is identical to H(s,F,G). Since v = T4X,
Ay = T4a747%, By = T4B, and C; = CT,"1. Thus,

-1
C1(sI = A4 = B4F1) B1Gy

1}

CTl-i(SI - TiATi-i - TiBFl)-:lTlBGl

T |
C(sI - A - BF{Ty1) "BGy L b1
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Choosing Fq = FT1°1 and G1 = G causes Hi(s’Fi’Gi) to be
equal to H(s,F,G), the desired conclusion.

The goal of thils development is the proof of the
central result that the use of Method C permits the multi~
variable system to be treated as m single-input, single-
output systems. In step (1) it is shown that any decoupled
plant is similar to a decoupled plant in standard form.
This fact and the simplicity of the standard form repre-
sentation are the motivation for considering the aug-
mentation of a plant in standard form with decoupled
compensatlon,

In step (2) it is shown that such a configuration
leads to m subsystems each of whose forms is completely
determined by a knowledge of the structure of the original
plant in standard form and the structure of the decoupled
compensation, Thlis is the result which is being sought
for the more general case of the compensation of decoupled
plant with decoupled compensation, and the keys to its
proof are given in steps (3) and (4). Steps (3) and (4)
establish the conclusion that the two augmented plants can
be mede to have the same transfer matrices by the proper
choices of the respective compensation matrices; thus the
result proved for the augmented plant whose original system
is in standard form is also true for the augmented plant
in which the plant is decoupled but not necessarily in

standard form.
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By this line of reasoning the following theorem
has been proved. _

Theorem 4.3 Let decoupled compensation be used

to augment a decoupled multivarisble plant.

Then for the purpose of compensating the re-

sulting augmented plant, the system consists

of m decoupled subsystems; the ith subsystem

has nq + 51 poles which can be arbitrarily

Placed by state variable feedback, and 13 + ii

zeroes which are not affected by the feedback.

The choice of lMethod C avoids the problem of loss
of coupling which plagues Method A; The arbitrariness of
Method A is also eliminated; one can be certain, for
exanple, that if 1 zero and 1 pole are needed in sub-
system 1, then the insertion of the corresponding com-
pensation network in channel 1 leads to the appearance of
the zero and an arbltrarily positioned pole in the transfer

function for Zigz). This simplé iliustration is the

essence of Theorem 4.3, even though the proof of the
theorem is quite abstract and requires the introduction
of a formal representation for the two parts of the
augmented plant.

The first step in the application of Method C
requires that the fixed plant be decoupled. The matrices
F#* and G¥ always decouple the plant, but the subsystems

resulting from these compensation matrices have poles at

107




the origin and at the locations of the zZeroes of the plant,
A slight change in the system parameters may cause the sub-
system poles to move into the right half plane. A further
disadvantage is that the subsystem gain is reduced to unity.

As far as the theory is concernmed it makes no
difference how the system is decoupled or what the gain or
subsystem poles are made. A practical method for deter-
mining the compensation needed to decouple the plant in-
volves the characterization of the class of 21l F and G
matrices which decouple the system., According to Theorem
3¢i, 2ll G matrices which decouple are of the form

G = B LA L. L2

where /. is diagonal and nonsingular. This equation showus
that the diagonal elements of G can always be chosen to
be 1 and that the elements of the columns of G are multiples
of the diagonal element contained in the column. The
choice of 1 is recommended for the dlagonal elements of G
because this choice assures that no system gain is being
deliberately canceled,

The class of F matrices which decouple is given by
Pquation 3,90, repeated below

F = F* + p+-1fq bo43

The easiest compensation matrices to implement are those
with the maximum number of elements which are 0. This
criterion and Equation 4.43 form the basis for the

selection of F, as shown in Example 4.4 below.
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Example 4.4, Consider the application of Method C
to the multivariable plant considered in the first two
examples of this chapter. In Example 4.1 the addition of
decoupled compensation leads to loss of coupling,and in
Example 4,2 the required zero at s = =3 could not be
obtained, 1In the present case Theorem 4,3 guarantees the
required results.

The block diagram for the plant is shown in
Figure 4.7(a)s This particular system was discussed in
Chapter 3, in Examples 3.1, 3.3, and 3.4. The class of
G matrices which decouple is defined by Equation 4.42
which, in this instance, is

%— g O
G = ' L Ll
_1_3 M1 P22

Let each of the diagonal elements of G be 1, so that
211 =7 Pz =1, and

1 0
G = [: ] Lbs
-10 1

The class of F matrices for this example is discussed in

Chapter 3, Equation 3.99, repeated for convenience as

g-l-% 911 %912 0
F = 4.46
-10(?2_1_3; 6;4) 1-1%6124-623 246
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18+5
1o X
s+l 2
+
J2
+
u i X
2 s+2 )
(2) PFixed Plant
i X y
U1 - 5%5 i i
io
i0 Xp
s+l .
¥2
- <+
u + i X3
s+2 =

(b) Decoupled Plant

Figure 4.7 Example 4.4
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10 Xy

(¢c) Augmented System

Figure 4.7 Example 4.4 (Continued)

111




For 61y = =5, 635 = 0, and 6,3 = =2, F takes the simple
form
0o o0 0

60 =1 ©0

The decoupled plant is shown in Figure 4.7(b). By

inspection, the transfer matrix for the decoupled plant is

p(s,F,G) = i 4,48
Y 8+2
Let the desired transfer matrix be
- o (s4+bs+8) (s+l ) (s+1)
H(SBFDG) = 1 )4,049

0 ————
+68+18

s

The form of the decoupled compensation required for the
system is found by comparing Equations 4,48 and 4,49, For
subsystem 1 a second-order compensation network with a
zero at s = =3 1s needed and for subsystem 2 a first-order
network must be added to the decoupled plant. All the
poles of the compensation network are arbltrary. One
possible cholce for the decoupled compensation is shown

in Pigure 4,7(c), The design is complete when the
compensation matrices F and G are found for the decoupled
plant. HMethods for finding F and G are the subject of

Chapter 5. For this example,
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F -193 0 0 “e 50 3050 0 e 1 o
0 -10  -10 0 o 1 o 1
4,50

The block dlagram for the final design appears in Figure
Lp.8.

Summary

The need for the techniques of this chapter is
present whenever state varlable feedback by itself does
not provide enough flexibility for meeting the design
specilfications, Method A, in which compensation is added
to the control input channels of the plant, does not appear
to be widely appllcable because in this procedure the addi-
tion of decoupled compensation may lead to loss of the
abllity of state wvarlable feedback to decouple the aug-
mented system., Also, the task of choosing the compensation
is complicated by the uncertainty of the form of the struc-
ture of the subsystems of the augmented system; Examples
o1, 4,2, and 4.3 illustrate these aspects of the method,

Method B does not suffer from eilther of the two
disadvantages of the previous method because the decoupled
compensation 1is addéd after the fixed plant has been
decoupled,s Its chief drawback 1s that the states of the
decoupled compensation appear unchanged in the transfer
functions of the compensated system, and there is no

feedback around the decoupled compensation., Thus the
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~s93 1
-o 50
y
st3| | ¥y | 7 X4
s+2 s+5
M -10 |e
i
10 Xp
| s+l +
J2
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T 1 x + = 1 p:4
2 . s+5 3 }C/ s+2 3
=10

Figure 4,8 Final Design for Example U4.4
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method is simllar to the much maligned open loop design
technique in which the compensation is used to cancel the
system dynemles and to insert the required dynamics in
thelr place,

In Method C the plant is decoupled before decoupled
compensation is added, and then all states, inecluding con-
pensator states, are fed back: The method 1s amenable to
a rather abstract analysis which culminates in Theorem 4.3.
The significance of Theorem 4.3 is that it opens up the
field of multivariable systems design to those engineers
who are familiar with only single-~input, single-output
systems. All the technlques used in the design of single-
input, single~output systems are now applicable to the
multivariable system design problem. In particular, the
state variable feedback technique 1s applicable, and this
i1s one which is emphasized.

The first step in Method C is the decoupling of the
fixed plant. In Example 4.4 the criterion used in deciding
how the step should be carried out was the simpliclty of
the matrix of feedback coefficients. Other criteria such
as system sensitivity, gain requirements, and other effects
of the relative positions of the poles of the augmented
system and the compensated system could be consldered.

The development of design procedures has now reached
the stopping point for this dissertation. Other developments
may follow but the remainder of this work 1s devoted to the
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development of design procedures for lmplementing the
techniques already known and to solving & practical problem.

Chapters 5 and 6 are reserved for these purposes.
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CHAPTER 5
COMPUTATIONAL PROCEDURES

The theory needed for the design of multivariable
gsystems by state variable feedback is discussed in
Chapters 3 and 4, The canonically decoupled (CD) repre-
sentation of the integrator decoupled (ID) system is the
means by which the subsystems are isolated and their
structure 1s identified. If the form of the subsystems
1s unsatisfactory, decoupled compensation is used to change
the structure to one for which state variable feedback
design permits the design specifications to be met.

In this chapter procedures are discussed for the
calculation of the numerical values of the compensation
matrices F and G, The first part of the chapter contains
a step=by-step design procedure which applies in design
problems where the addition of decoupled compensation is
not needed. The relevant formulas from Chapter 3 are
repeated and used in describing 21l but one of the steps
in detail. The step, gilven a brief treatment at thls stage,
is that of calculating % and 6, the compensation matrices
for the canonically decoupled representation of the

integrator decoupled plant.
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The second chapter section presents the well-known
Phase-variable transformation, discussed by Johnson and
Wonham (1966), and explains its use in an easily progremmed
technique for calculating ﬁ and‘eo The utility of the
phase-variable transformation in the state variable fecdback
design of single-input, single-output systems has been
recognized by Morgan (1963) and Melsa (1967), among others:
the reosults presented here are an implicit part of a lemma
quoted by Gilbert (1968).

The third sectlon adapts the above computational
procedure to fit the case where decoupled compensation
must be added to the decoupled plant by using Method C
of Chapter %4, For the case where Q49 = 0, or where the
sum of the orders of the subsystems is n, the means is
discussed for avoiding the intermediate step of finding
the CD reprssentation for the augmented system. When

&+1 # 0, there is no cholce except to find the CD

representation,
No new theory is developed here, but the results

are new to the extent that previously known computational
procedures are adapted to £it the new design technique.
In particular, the concept of a multivariable, phase-
variable transformation and the accompanying algoxrithm
for finding the corresponding transformation matrix are

new. An attempt to maintain unity of presentation is made
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by taking the two examples of this chapter from Chapters

3 and L,

The

Step=-by~-Step Design Procedure

presentation of the computational techniques

is simplified by making reference to the following design

procedure,
problems in

(1)

(2)

(3)

(&)

(5)

This design procedure is applicable for deslign
which decoupled compensation is not needed.
Find the matrix B¥%; if it 1s nonsingular,
the multivariable system can be decoupled,
Calculate F* and G¥, the compensation
matrices which put the system in integrator
decoupled form.

Calculate the matrix @ and use it to change
variables and find the canonically decoupled
representation of the integrator decoupled
system,

Identify subsystems and note the fixed
zeroes and number of poles for each.

Select the desired transmission matrix

and compensate the canonically decoupled
system by finding the numerical ? and 6
matrices which cause the resulting com-
pensated subsystems to have transfer

functions that meet the design requirements,
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120
(6) Calculate F and G, the matrices which are
used for compensating the original system
80 that it exhibits the response achieved
in step (5).

The first two steps are stralghtforward and are

easlly programmed on a digital computer. The multivariable

gystem 1s described by the equations

X = AX 4+ Bu 501
y= Cx 502
and B* is defined by - -
d
c4A%1B
B¥% = o 503
_CmAde_J

where di* i1 =1, s00p My is the smallest noﬁnegative

integer for which the row matrix CiAdlB # 0, In addition,

F% gnd G¥% are —

ciAd1+1
- - [}
F# = B% 1A§ = =B 1 o 504
o
dnti
Chh m
| —
G* = pr=1 505
and the ID system representation is
x = (A + BF#)x + BG*u 5.6
y = Cx 507
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In step (3) the matrix Q is needed in finding the
CD representation of the integrator decoupled system. The
rows of Q are grouped together in m+i blocks labelled Q4
and having ny, 1 = 1, ..., m+i, rows. For Qis 1 2 1, co0y
m, the first d,+1 rows are Cj, ciAf' vooo C;AL and the last
ni-di-l rows are any row vectors which, together with the
first 4,41 rows, form a basis for the (row) vector space
Qs defined by
@ ={7174B;=0, k=0, 1, vou n-1, §= 1, cory m, .

JFL 1=1, coap mg.
For each 1, 1 = 1, .o¢, m, Equation 5.8 defines a set of
n linear algebralc equations whose unknownsg are the com-
ponents of the row vector /). The solutions of the equa-
tions form the vector space of Qi of dimension n, and
the row veégars Cyo Cyhdy coop CiAdi are linearly
independent members of Q.

Once n4, the number of poles of subsystem i, 1s
known, the number of zeroes of the subsystem, 1;, can be
calculated, The relevant equation, as discussed in
Chapter 3, 1s

4y =n ~dg -1 1=1, coepm 59

The problem of extending the row vectors Cs,

CyAy oeey C3A% o form a basis for @ is simplified by
the use of the Hermite normal form (Nering, 1963). The

Hermite normal form is defined and its exlstence 1s

1. The matrix A is the system matrix for the ID
system.
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assured by Theorem 5.1 below. This theorem is, by
coincidence, Theorem 5.1 in Nering (1963).
Theorem 5.1 Given any m X n matrix D of rank
o< , then by a sequence of elementary row
operations on D a matrix D' can be formed,
where D' has the following structure:
(1) There is at least one non-zero element
in each of the first “<rows of D', and the
elements in all remaining rows are zero.
(2) The first non-zero element appearing in
row 1 (1<) is a 1 appearing in column
k4, where k1< K5 < e0e < koco
(3) In column k4, the only non-zero element
is 1 in row i,
The form of D' is uniquely determined by D. Thus
the matrix D' has the form

column column
kq ko —
TB 0 1 a’ 0 a°
LN N J 1’k1+1 [ XX 4 1’k2+1 @00
0 o9 e O O O 290 1 dozvkz.’.l [ X N-]
0 X X 0 0 0 (XX 0 0 000
< ° Qo ® [ °
] ® [ o ] ]
0 e Q 0 0 eve 0 0 0o
L . —

In the present discussion D is the coefflicient

array for the set of linear algebralc equations found from
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Equation 5.8. The matrix D° is found from D (with the
aid of a digital computer) and then used in obtalning

a standard basis for €. Each of the vectors in the
standard basis is checked for linear dependence on the set
Cys Cihy eoey CiAﬁi. If the vector is linearly indepen-
dent of that set, it is added to C4, C4A, cesp CiAdi; it
if is dependent, the vector 1s discarded. Thls procedure
1s always successful (Theorem 3.6 in Nering (1963)) and

in addition is easily programmed.
m

Iif g’l n, <n the basis vectors for @, 1 =1,
eesy M, are not sufficient to span the n dimensional space
of row vectors. The remaining rows of Q are then found by
choosing as rows the n tuples representing the vectors
which are needed to form a basis for &} these vectors are
not unique. After Q is found, the CD representation can
be computed, as

=12 + QBe¥u 5,10

% = Q(A + BFR)Q
y = cQ~1g 5,11
The special structure of the matrices of the CD
representation is used in step (4) in identifying the form
of the subsystems. According to Figure 3.3(a) the ith
subsystem has the state equations
31 = a,,81 + By, ul 5.12

Yi = ﬁi 5.13
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The transfer functlion py4(s,F*,G*), relating the output
¥3 to the control input uy has d;+1 poles at the origin
and 1; poles at the same locations as the zeroes of the
ith subsystem:. The subsystem zeroes are the zeroes of
the characteristic equation of.@i,

det(sI = §4) =0 5014
where d%_is a submatriz of the matrix A;; and 1s defined
in Pigure 3.3(b). An efficient computer program for
finding and factoring the characteristic egquation of a
matrix is avallable in the report by Melsa (1967).

In step (5) the CD representation is used, and the
matrices § and 6 are found which cause the compensated
system to exhibit a response which satisfies the design
requircments. This step is best carried out with the aid
of a phase-variable transformation and is discussed in
detail in the next section.

The final step in the design procedure is the
calculation of the matrices F and G to be used in compen-
sating the original system, The matrices ﬁ and 8 are the
known compensation matrices for the CD systeme. Now

u=Fs+ ér 5015
But since % = Qx, Equation 5.15 can be written

us= %Qx + er 50,16
which shows that the compensation matrices F4 and Gy for

A
the ID system are %Q and G, respectively., The ID system
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and the original system are control law eauivalent, so
that the matrices F and G can be found which apply to the
original system. The required formulas relating F te Fy
snd B¥, and G to Gy and B* appear in Equations 3.59 and
3.60, For the Fq and G4 found above, these equations gilve
F = F* + Be-ifiq 5,17
¢ = p+~1G 5.18
The remaining topic to be discussed is that of
finding % and e. Once this has been done, F and G are
calculated from BEquations 5.17 and 5.,18,and the design
is ready to be implemented on the physical system.

Use of the Phase-Variable Transformation for Compensation
Consider a controllable, single-input, single=-

output system described in the state equations
x = Ax + bu 5.19
y = ex 5.20
where X is an n-vector, u and y are now scalars instead of
vectors, b 1s an n-vector, and ¢ 1s a 1 x n row vector.
The transfer function p(s) relating y and u is

y k(sl + a181-1 + o8 + al)

(g8) = == -
P u st - pisn:1 - ppaP=*

5.21
see = pn

A well~known system representation, the phase-variable

representation, takes a form in which the n coefflclents
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Py and the 1 coefficients &3 appear directly. If x°
denotes the phase variables, then the system equations are

o
x? = A'2" ¥ Du _

FE 1 0 coe 0 FO
0 0 1 so00 0 0
= : : : : x° <+ : u 5022
| Pn Ppn-i sos  Pq [ 1]
y = ¢c'x’

= kla; @31 e.0 885 0 oo O0lx° 5423
Let state variable feedback be used for compensating
the system in phase-variable form, as
u=7°c" + g°r 5.24
where f° is a 1 x n row vector having elements fi. and

g' and » are scalars. Then Equation 5.22 becomes

[ o 1 ceo o | 0
0 0 000 0 0
x*= | . . S TR I
. o ° e | 5.25
0 0 . 1 0
pnffi pn_1+fé ses p1+féJ :g:

and Equation 5,22 is unchanged. The transfer function
relating y and r for the compensated system h(s,f',g")

is given by

g'k(st + a181°1 + oeo + 8y)
gty ) .26
h(s’f 8 ) sn - (pl"’fﬁ)sn-l ™~ 000 = (pn.‘.fi) 5
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If the deslred characteristic polynomial is
a(s) = s - qj_sn"1 - qps™% - ... - Qp 5¢27
then the elements of f' should be chosen as
fi=qy =Py
f2 = Qp-q = Pp-1

fn =49 = Pq 5.28
The variables x and x' are related by the nonsingu-
lar matrix T, as
x = Tx* 529
and so the matrix f for the original system which corres-

ponds to f°' is

1 5,30

£ = £'T
The change of variables 1s concerned with the state
variables x and x*, and not the input variable r; thus,
g and g' are related directly, as

g=g' 5.31
The input gain g' is selected from the requirement that
the factor g'k in Equatlon 5.26 be equal to the required
subsystem galn,

An algorithm for calculating T 1s given by Johnson

and Wonham (1966). Let

TafTy T oo Tyl 5432

where Ty are n x 1 column matrices. The algorithm is
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Tn=1 = ATn = piTn
The2 = ATyp.g = PoT,
[»]

-]
[+]

Ty = AT = Pp-iTn 5033
Note that the coefficients of the characteristic polynomial
p(s) are required in using the algorithm, The discussion
for single-inpuv, single-output systems is now complete.
Next, the multivariable system is considered.

Once step (4) of the design procedure is
accomplished, m decoupled subsystems are in evidence, Each
subsystem can be treated as a single=input, single-output
system. For the ith subsystem, the state equations of the
subsystem, Equations 5,12 and 5,13, replace Equations 5,19
and 5.203 and the transformation,

1 = el 3 =214, o0, m 5034
where the subscripts are used to designate the subsystem,
replaces Egquation 5.,29. Since the system 1s integrator
decoupled, the ith subsystem has d4+1 poles at the origin
and 11 poles at the locatlons of the zeroes of that sub-
system, as found from Equation 5.14, Therefore, the
characteristic polynomial for the ith subsystenm,
pl(s,F*,G*), is

pl(s,F#,6%) = sd1tlget (s - @E) 5035
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The coefficients of pl(s,F*#,G*) are needed in the
calculation of Ti.

There are now m separate design problems; in each
one the fixed zeroes and the number of poles are known,
After the desired gain and characteristic polynomial are
selected for a subsystem, the required input gain and
feedback coefficients are calculated. For the ith sub-
system the input gain g}, is found by setting 1t equal to
the required system galn stipulated by the design specifi-
cations because the ID subsystems have unity gain. In
accordance with Equation 5.31 the corresponding input galn
@11 for the CD rather than the phase-variable representa-
tion 1is Just gii. The matrices G' and 6 are thus i1dentical;
they are diagonal matrices because the multivariable system
is decoupled when it is put in integrator decoupled form.

The row vector of feedback coefficlients for the
ith subsystem is labelled £'1; 1t 1s found from pi(s.F*.G*)
and qi(s.F,G). the desired subsystem characteristic
polynomial, Equation 5.28 is used for this purpose. After
f'i is found, the corresponding row vector for the CD
representation is calculated. Recall from Chapter 3 that

A
F must be of the form
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rel 0 200 0 0
0 6, 0 0
A ° e ] ]
F = ° . ° o 5.36
8 0 0 Em O-

where each &,, 1 = 1, .00, m, is & 1 ¥ n, matrix. Each
91 1s found from f£'1 and 71 by using the equation
corresponding to Eguation 5.30; namely,
6y = £ri(r1)-1 5.37

At the completion of the design of all m subsystems,
all m rows of ﬁ and all dlagonal elements of 6 are known.
The corresponding matrices for the original system are
then found from Equations 5.17 and 5.18; these last com-
putations complete step (6) of the design procedure. The
deslign procedure is now illustrated by Example 5.1,

Example 5.1

As an example of the step-by-step deslign procedure
consider the system used for Examples 3.1, 3.3, and 3.k,
Steps (1), (2), and (3) have already been carried out in
Chapter 33 for convenlence the results of these steps are
shown in Figure 5.1(a), (b), and (c). In step (3) only
one row of Qq, namely Cq = {1 0 0] 18 mown directly

‘because djy = 0, The set of linear equations assoclated
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B* = B*-i =

(a) Step (1), Test for Decoupling

5 1
7 0 0 7 0
FE = G* =
5 10
-5 1 2 5 1
[0 0o o] [ 1 o]
1 0 o0
t= |2 1 olx+| o u = <
7 7 y
0 1 1
50 10
=7 v Iw i

(b) sStep (2), Integrator Decoupled System

1 0 0
1 0 o0
Qq = Q=0 1 o
0 1 0
o 1 1
Q2=[o 1 1]
- _ _
[0 o0 o 1 0
. 1 0 0
2=150 .1 ol|&+(2 ol v = &
7 7 0o o0 1
0o o0 o 0 1 '

(c) sStep (3), Canonically Decoupled System

Pigure 5.1 Example 5.1
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with ¢ is found from Equation 5.8 with i = i, These
equations are

7By =13 = 0

748, = 0

2428, = 0 5.38
so that a sultable basis for @ 1s {[1, 0, 01, [0, 1, 0 }.

The dimension of &4 is 2, indicating that another

row vector is needed in forming the matrix Qq. A suitable
choice for this vector is [0, 1, 0], the basis vector
which is linearly independent of Ci‘ In this example
the coefficient array for Equation 5.38 1s

0 0 1
0 0 0
0 0 0

which is already in Hermite normal form., For more
complicated examples it is necessary to reduce the co-
efficient array to Hermite normel as an aid in finding a
basis for the subspace.

Step (4) has also been carried out for this example

in Chapter 3, and the subsystem transfer functlions were

found to be
P11(s,F*,G*) = §%§%TT 5439
Ppp(s,F¥,6¢) = 1 5.40

Again, subsystem 1 has a fixed zero at s = -1 and two
arbitrary poles; subsystem 2 has one arbitrary pole.
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Choose as the transfer functions relating the

inputs to the outputs

2(s+i
hq4(s,F,G) = ;2&53;% 5.1

These are the same choices as in Example 3.4 of Chapter 3.
Step (5) is the calculation of the numerical
matrices # and 8. Consider subsyster 1; comparing
P14(s,F#*,G*) in Equation 5.39 with the transfer function
of Egquation 5.21 and the phase-variable representatioﬁ of
Equations 5,22 and 5.23, one arrives at the following

rhase~variable representation

. 0 1 0
x'1=[0 j]x“i‘i- . u 5.43

y=[1 1)l 5,44
For convenience the superscript 1 is dropped from y and u.
The compensation matrix 'l and the scalar gi1
needed to achieve the response required by Equation 5.41

2
£'1 = 2 4], The scalar g}, must supply the required

are found by using Equation 5.28; fii =-2, f’i =+, or

gain; thus 3i1 = 2.

In order to find ©,, the compensation matrix
corresponding to f’l, but which applies to the CD system
representation rather than the phase~-variable representation,
the matrix T1 relating Qi and x'1 nust be found by the
algorithm of Equation 5.33. The required calculations are
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F 1 1

73 = Ti=AT;+T;=
10 50
7 7

oY

1 1

pl = 5,45
10 50
7 7

Now step (5) is completed for subsystem 1 by calculating
©, from £'! and T! using Equation 5.37, as
6, = £'1(rhH-1
1
P ® = [-2 ‘n%] 5.6
i 5
Subsystem 2 is already in phase-variable form, Its
pole 1s required to be placed at s = -1; the required value
of the feedback coefficient is found from Equation 5.28
to be O, = -1, The gain for subsystem 2 is unity, or
ézz = 1, The complete compensation matrices ? and 6 are
found by putting together the rows found in the design of
the individual subsystems, in conformity with Equation
50363 they are |
. | - o 2 o
=

0 0 -1 0 1

The final design step, step (6), is the calculation
of F and G from Equations 5,17 and 5.18, as

134




— _ —
2 1 1 0 o0
7 0 5 0|2 w% o

=__5g + 10 0o 1 o0
1 A0 0 0 =1

N 2 7 o 1 1

_.lg P o—l
2 175

= _8_& 1 . 5048

! In

G = p*~1§
Fl ollz o 2
7 7 0 .
= = 5.49
19 20
- 1 0 1 2 1

Parts of the design procedure which have not been
dlscussed are design specifications and the selection of
the transfer functions to meet the specifications. These
subjects have been treated by many authors (Truxal, 1955;
Bower and Schultheiss, 1959). Except for this task, the
design procedure ls amenable to digital computer computa-
tions in connection with this dissertation working programs
have been written and used to check the numerical examples,
The computer programs are not included in the text because
further usage 1s needed to be sure that the programs are
reliable. An excellent program for the state variable
feedback design of single-input, single-output systems 1is
described by Melsa (1967); this program has definite utility
in the pultivariable system design.
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Procedure Applicable to the Augmented System

In this section the modifications of the design
procedure and the associated computational procedures are
presented for the case where series compensation is added
to the multivariable plant. HMethods A, B, and C are used
when additional dynamics are needed,

Both HMethod A and Method B are similar to design
by state variable feedback alone as far as the computational
requirements are concerned., In Method A steps (1) = (&)
are completed for the glven plant, and the subsystems are
identified. Then series compensators are placed in the
control inputs of the plant, and steps (1) - (4) are
repeated, The repetition of steps (1) = (4) is necessary
because there is no guarantee that the augmented plant can
be decoupled or that zeroes added in the compensation will
appear in the appropriate subsystems. If the augmented
plant can be decoupled and the forms of the subsystems
of the augmented plant are satisfactory, then steps (5)
and (6) of the design procedure are completed.

For Method B steps (i) -~ (%) are completed for the
given plant, and the subsystems are identified--Jjust as in
Method A, But now the plant is compensated by state
variable feedback in order to realize as much of the
transfer matrix as possible. Steps (5) and (6) are re-
quired to calculate the compensation matrices at this stage.

The design is completed by inserting the series
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compensators in the new, decoupled plant which cause the
system specifications to be met,

The computational procedures for Method C are now
dlscussed in detail. The first four steps of the previous
design procedures (checking decoupling, finding the ID
system and the CD representation, and identifying the
plant subsystems) apply in the present case. After the
subsystems have been identified, the designer has two
new tasks. He must decide what additional compensator
networks are needed to meet the design requirements;
commonly, lead~lag networks are necessary for increasing
the velocity-error coefficients or one or more poles are
used to cancel unwanted plant zeroes. It must also be
declded how the plant 1s to be decoupled.

One suggestlon for decliding how to proceed in
decoupling the plant is discussed in Chapter 4. The
criterion used for determining F is cost, and the lowest-
cost deslgn 1s assumed to be the one in which the largest
number of entries of F are zero, The use of thls scheme
requires that the class of all decoupling F matrices be
found from the equation

F = F* + B+~ 1fq 5.50
Here, F¥*, B*'i, and Q@ are numerical matrices and ﬁ has

the form
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rei 0 ®00 0 OT
0 92 [+ B+ ] o 0
A ] ° ° [
F = o [} o o 5'51
—0 o 3 ¢ ] em 0—

where each 6;, 1 =1, .40, m, 1282 1 x n; matrix. After
F has been found in terms of the elements of the 61, as

many of its elements are made zero as possible,

The recommended G is the matrix in which the dlago-

nal elements are 1, and the off-diagonal elements satisfy

the equation
G = B+~ 1A 5452

where A. is a diagonal matrix whose dlagonal elements are
nonzero. The above G matrix is simple and requlres a

minimum amount of gain,

The equations describing the decoupled compensation

are
% = Ax + Bu 5453
u=Cx + Eu 5054
and the augmented system has the equations
%=1 + B
[A BE]N BE | _
= lx+| - |0 5455
0 A B
y = &x
= [c 0]% 5.56
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The CD representation for the integrator decoupled
form of the original system is no longer applicable be-
cause the plant 1s now described by Equations 5.55 and 5.56,
rather than Equatlions 5.1 and 5.2. Therefore, the com-
pletion of step (5) of the design procedure (calculating
ﬁ and 5). in its present form, requires finding the ID
plant and the CD representation for the augmented system.
Except for this change, steps (5) and (6) are exactly the
same as in the case where no decoupled compensation is
needed,

If the designer proceeds in the manner descrlibed
above, the CD representation must be found bbth for the
plant and the augmented plant. The CD representation of
the plant 1s needed to determine the plant‘®s structure, and
the CD representation of the augmented plant is used in
steps (5) and (6) for finding # and € and then F and Ge

There is a speclal case in which the second CD
transformation is not needed, By Theorem 4.3 the form of
the augmented system 1s known from the form of the de-
coupled plant and the decoupled compensation. Once the
augmented plant is integrator decoupled, the ith subsystem
has €;+1 poles at the origin and ii known zeroes which are
canceled by poles. The important conclusion is that the
characteristic polynomial for the subsystems are known

because all of their pole locations are known.
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The special case referred to above is the one in
which the matrix Apyq p+g is not needed in the CD repre-
sentation of the ID plant., For the speclal case, Am+1,m+1
is also unnecessary in the CD representation of the ID
augmented plant because of Theorem 4,3. Thus each of the
poles of the ID augmented plant 1s assoclated with one
and only one subsystem. Thls fact makes possible a change
of state variables for which the A, B, and C matrices
have the form shown in Figure 5.2(a) and (b).

The structure in part (a) of the figure can be
achieved by a linear change in the state variables of the
ID augmented plant because that system is decoupled and
because Apyq p+1 1S assumed not to be needed in the CD
representation. The structure of part (b) indicates m
subsystems each of which is in phase variable form. The
fact that this structure can be achieved is proved by
giving a procedure for constructing the requlred trans-
formation matrix, but first the representation is defined
formally, as followss

Definition 5.1 A decoupled multivariable

system is in multivariable phase variable

form if the matrices in the equations

;' = A'x + B'u
y = C'x*
take the form shown in Figure 5.2(a) and (b).
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A

Bt =

C' = .

(a)

Figure 5.2

o o0 e O
Aéz [N N ) O
[}
A11 is n, ¥ n,
[ ]
. i-= 1’ soey N
0 [N N ) A'
mm _|
O [ B N ] O
B' I X N ] O
22 v
) i B11 is n1 x 1
[ ] [ ]
L] - [ ] i=1' ...,m
o [ N ] B'
mm——
O e 0
c* 0
22 [N X} .
i C11 is1x ny
. 1=1, veey I
o [ X X ] C'
Tom

Structure of A*, B', and C'

Multivariable Phase Variable Form
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r— a—
0 i 0 ooe 0
. _ o ° o °
A 11 - : : [} o
0 0 0 i
i i 1 1
Db b P coo0 P
__ni ninl ni—z 1-4
0
. _ °
Plag = |-
0
—1_
. ~ ot i i
C 13 < [ali ali-l eeo 31 0 see 0]

(b) Structure of A'ii, Bnii’ and C'ii

Figure 5.2 Multivariable Phase Variable Form (Continued)
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In the present case the numbers p%, J =1, seey
ny, are the coefficients of the characteristic polynomial

of subsystem 1 of the augmented ID plant; i.,e.,

pl(s,Fr,0%) = g™ - plei-l L, - p}li 5,57
Similarly, the numbers a%. J=1, ¢eey 14, are the
coefficients of the numerator polynomial of subsystenm 1,
Both sets of numbers are known because the structure of
the augmented plant 1s known from the structures of the
decoupled plant and the decoupled compensation.

An algorithm 1s now developed for finding the
nmultivariable phase variable representation from the
integrator decoupled, augmented plant representatlion.
The intermedlate step of finding the CD representation
1s being by-passed.

Let the augmented plant be integrator decoupled
so that the equatlions for the ID augmented plant are

’:t:' = (A + 'ﬁﬁ*)i + BG*G 5458
y = C% 5459

Define x' as the state vector for the multivariable phase
varlable representation for the system of Equations 5.58
and 5.59, The state vector X is related to x' by the
nonsingular matrix T, as

% = Tx* 5460

In terms of x' the state equations are
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©
x®* = A%x® 4 B%'u 5,61

y = C'x? 5062
and on substitution of Equation 5.60 these equations become

% = 1a0r=1g 4 TRy 5,63

y = ¢op=i¥ 5,64

A comparison of Equations 5.63 and 5,64 with
Equations 5.58 and 5,59 reveals the following

TA® = (R + BF#)T 5.65
TB* = BG* 5,66
cor~l o ¢ 5,67

The unknown in these equations is the transformation matrix
T: An algorithm analogous to that of Eguation 5.33 1is
being sought, but in the present case the change of vari-
ables is being made for the entirelsystem rathexr than for
each subsystem considered separately. This 1s necessary
because the matrices A+ ﬁ§*9 %5*, and C have no special
structure when considered separately.

Let T be partitioned into n columns in the

following way

1.1 1,22 2 m m
T =TT, oee Ty 1Ty oow Ty oo TyTp eoe T 1 5068

where each T% is an n ¥ 1 column matrix,

Consider Equation 5.66. Because of the special
structure of B' shown in Figure 5.2(a) and (b), the left-

hand side of Equation 5,66 is

' = 1 2 o060 Tm 96
TB [Tn1Tn2 nmJ 5.69
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Substituting this expression for TB in Eguation 5,66 gives
an expressior for m of the n columns of T, as '

Trjii = (BG%); 1=1, coor m 5,70
where (ﬁﬁ*)i 1s the ith column of BG*, Next, consider
Equation 5.65. The matrix TA' has a special form because
A' has a specilal form. For simplicity consider Jjust the

first nq columns of TA'; in order, they are

s eecgp T1 +p1T1

1.1 1 1 1 1 1 T1
-2 N4 n,-1 1ny

p. T" , T+ p ™ , T " +p

The use of these expressions in Equation 5.65 gives

plol - (4 ﬁf‘*)‘l‘i’

n1 n1
T1 + p1 T1 + (& + ﬁ?*)T1
1 11 ~ Fodad 1
= + * .
Tni_ 1+ ) 1Tn1 (A + BF )'1'nl 5,71

When the rest of the columns of T are considered,
equations of the form of Equatlions 5.71 result, with the
superscript 1 replaced by i, 1 = 2, coo, M

The recursion relationship for the columns of T is
found from Eguations 5.70 and 5.71. In Egquation 5.71 the
last equation is solved for Tii_l in terms of T&l and then
the next equation 1s solved for Tgl_z in terms of Tn1-1
and T; » and so on. In compact form the resulting

1
algorithm is
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i
T, = (BG*)i

i
i= 1, eoey My ,j = 19 soeyp ni‘=1

1 i i
T = (A + BF* -
ni"J ( BF# )T 1-J+1 pJTni

5072

These equations are easily programmed on a digital computer.
Once the ID augmented system has been put into the

multivariable phase variable form, step (5) (calculating

F* and G*') 1is easily carried out. The matrix F° has the

followlng form

[—f'i 0 cee 0
0 £12 ., 0
F* = , 5.73
o 0 oceo0 f'm
L _—

where each f'1, 1 = 1, .uo, m 1s & 1 ¥ n; matrix. For the
ith subsystem the characteristic polynomial is pi(s) and
the desired characteristic polynomial is al(s). The
elements of f'i are given by the equatlons corresponding

to Equation 5.28; namely,
£l = qi - pi
n4 ni ni

foi = qi - pi 5.74
n, i 1
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The matriz G' 1s dlagonal and its ith diagonal
element is equal to the required gain of the ith subsystem
of the final, compensated system.

For the augmented system expressed in terms of its
physical variasbles, the corresponding'ﬁ and afmatrlces

(step 6) are

~ ~ - ~
F =% + galpg-l 5.75
a, = ﬁ*-iG. 5.?6

The discussion of the computational procedures for
design problems which require the addition of dynamics 1is
now complete. The following example illustrates the appli-
cation of the particular procedure which 1s given the most
attention in this section; namely, the one in which Method
C 1s needed and in which the matrix Ap4q p+1 does not
appear in the CD representation of the integrator decoupled

plant,

Example 5.2

Consider the example which 1s used to illustrate
Method C in Chapter 4; namely, Example 4.4, Steps (1) -
(4) nave already been carried out and the augmented system
is shown in Figure 4,7(c). Only steps (5) and (6) remain

in the deslign.
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The state equations for the augmented plant are

r:5 0 0 7 0 0 FB 0
0 -1 0 10 0 0 0 0
. 0 -1 -2 -10 0 1 0 0|
X = X + u 5677
0 0 0 =2 -1 0 1 0
0 0 0 0 . 0 1 0
| 0 0 (o] 0 0 -QJ | O 1_
1 0 0 0 0 o]
y= X 5.78
Y 1 1 0 0 0

With the aid of a digital computer B*, F¥*, and G¥, are

found to be
7 0 3,574 0 0 7 1 0
B®* = P =
0 1 0 4 <4 0 0 7
(L1429 0
G* = 5,79
0 1

and the state equations for the integrator decoupled,

augnented system are
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P ~ e v
X = (A + BF*)x + BG*u

[ s 0o 0 7 0 0 o 0
0 -1 0 10 0 0 0 0
0 -1 -2 -10 0 1 0 of._
= X + u
=3.571 0 0 5 0 0 « 1429 0 5,80
=3.,571 0 0 7 -3 0 « 1429 0
0o -4 % o o 2| [ o 1
y = Cx
1 0 0 0 0 0],
= X 5.81

Subsystem 1 has two zeroes, one at s = =3 and one
at s = =1, In the ID augmented plant two of the four poles
are used for cancellng the zeroes and the remalning two are
at the origin. Thus the characteristic polynomial is
s2(s+1) (s+3)
= su + 433 + 332 5.82

51(39§*s6¥)

In a similar fashion'Sz(s) is found to be
~ ~
7% (s,F*,G%) = &2 5.83
Enough information has been glven so that T can be

calculated from Egquation 5.72, as
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3.00 4,00 1.00 0 0 0
21,43 11,43 i.43 0 0 0
-21,43 ~11.43 -1,43 0 1,00 4]
T = 5084
2,14 3.29 1.29 0,14 0 0
10“’3 2043 1,14 0,14 -0 0
0 0 0 0  2.00 1,00

The desired transfer matrix for the compensated
augmented system is given by Equation 4.49, From this
equation the characteristic polynomlals of the compensated

system are identifled as

QY(s) = (sP+bs+8) (s+l) (s+1)
= st + 983 + 3282 + 565 + 32 5,85
a%(s) = s? + 63 + 18 5,86

The characteristic polynomials of the subsystems
of both the ID augmented plant and the flnal, compensated
system are now known., The coefficients of these poly~
nomials are used to calculate the rows of the compensation
matrix F'. For this purpose, Equation 5.74 is used, and
the resulting P' 1is

=32 =56 =29 =5 0 0
F’ = 5.87
0 0 0 0 =18 =6

The compensation matrix 5, which applies to the
augmented system expressed in terms of 1ts physical
variables, 1s found from Equation 5.75 to be
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-93 0 0 -.50 3,50 o:]
5.88

According to the design specifications embodied
in Equation 4,49, no additional gain beyond that already
present in the plant is required, The gain of the ID
system has been made unity so that the plant gain (repre-
sented by the diagonal elements of B¥ in Equation 5.79)

must be restored by the matrix G'. Thus,
G* = 5489

and G is calculated from Equation 5,76, as

G = pe~1ge
1 0
“lo 1 5+90

The design is now complete, A block diagram for

the designed system appears in Chapter 4 as Figure 4.8,

Sunmary
There are two parts to this chapter. In the first

part complete computational procedures are described for
performing the calculations required in the design of a
multivariable system by state variable feedback. The
relevant design formulas from Chapter 3 are organlized as

part of an orderly design procedure, and the phase variable
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transformation is introduced and utilized for the
calculation of the compensation matrix F, The discussion
is complete in the sense that the designer can use the
design procedure in going from the start (the system
equations) to the finish (the compensation matrices F and
G)o. For all but simple examples the use of the design
procedure requires the aid of a digital computer. In fact,
the procedure is formulated with this requirement in mind.

The second part of the chapter extends the first
part to cover the case where series compensation is needed
in order to meet the design speciflications,

Methods A; B, and C, presented in the previous
chapter, are now discussed from a computational point of
view., The filrst two methods are given a brief treatment
because theilr computatlonal aspects are similar to those
already described. Method C is treated in more detail,

Two applications of state variable feedback are
needed in the design of control systems by Method C. The
calculation of the feedback coefficients for each appli-
cation could require a separate transformation to the
CD representation, For the special case where each of the
plant poles is assigned to one and only one subsystem a
technique is given for avoiding one of the transformations
to the CD representation. The technique employs the
multivariable phase varlable representation, a concept

which is introduced in the chapter.
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The comments on the computational procedure of
the flrst part of the chapter apply to the second part.
Again, the procedures are complete and especially tailored

for digltal computer usage.

153




CHAPTER 6
A PRACTICAL EXAMPLE

The theory and deslign procedures for the state
variable feedback design of multivariable systems 1s
presented in the preceding chapters. The present chapter
is concerned with the application of the state varlable
feedback technique to a practical example. The physical
system chosen is a coupled-core nuclear reactor (Weaver,
1968). The inputs to the system are the reactivities for
each core, as determined by the positlionsof the core
control rods, and the system outputs are the power levels
of the individual cores. The total vower for the system
is obtained by adding the powers for each of the cores.
Coupling between the cores exlists because of neutron
leakage between the cores. Thus, if the reactivity input
to one core is changed, then the power levels of all the
cores are affected.

The mode of operation desired is that in which all
cores are given the same input and are required to respond
in an identlical manner., Thls goal is achieved by using
state variable feedback to decouple the system and to cause
each subsystem of the compensated system to exhlblt the

same response as the other subsystems. The advantage of
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this mode of operation 1s that all cores share equally the
task of providing the power output,

Without the addition of series compensation, the
desired subsystem responses cannot be realized. One of
the methods of Chapter 4 is needed to supply the addi-
tional dynamics required. Method A is well suited for
thlis example because the addltion of a single pole to each
subsystem allows the design speclfications to be met.
Theorem 4.1 assures that decoupling is not lost by the
addition of the series compensation; the loss of zeroes 1is
not a concern (as it turns out) since no zeroes are being
added in the compensatlion.

The values of the parameters used in the description
of the physical system are the same as those used by
Weaver and Vanasse (1967). Three cores are assumed, and
so the multivariable system has three inputs and three

outputs.

Coupled-Core Reactor Design

A coupled-core nuclear reactor is a critical
reactor consléting of two or more subcritical cores
(Weaver, 1968). There is a mutual exchange of neutrons
among the cores due to the neutron leakage of the cores.
It is this neutron leakage between cores which makes the
entire system capable of sustaining a nuclear chain

reaction. Because of the neutron leakage, the behavlior
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of each core is influenced by the behavior of all other
coress in other words, the system is coupled.,

The specific case of three coupled cores 1is
considered, In the plant equations, the effect of delayed
neutrons and controller dynamics are excluded, and the
cores are assumed to be ldentical with the same neutron
coupling coefficient. Even so, the equations are still
nonlinear and must be linearized about the steady-state
reactivity and power levels. These matters are discussed
fully in the reference cited above., Here the linearized

equations are assumed to be given, as

Ang D D ng
e Xo + %X3 + ;15 + 7?“1

ii =—%’x1 -

xz = lei - ax,

« _D D 4 ng D. no

Xy = K113 - ax)

e _D D, .D. _ 270 no
x5-71721+’1'x3 ’t’x5 X6+-A?-U.3

x6 = K1x5 - ax6

yq1 = X1
Yo = X3
33 = X5 6.1
where Xy = neutron density or power in core 1
X, = temperature in core 1

Xq = neutron density or power in core 2
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Xy = temperature in core 2

Xy = neutron density or power in core 3

x4 = temperature in core 3

uq = reactivity input from controller 1

U, = reactivity input from controller 2

ug = reactivity input from controller 3

4 = total neutron density or power of core 1

¥2 = total neutron density or power of core 2

¥y3 = total neutron density or power of core 3
Assume the following values for the system

parameters (Weaver and Vanasse, 1967)

ny = 105 watts Ky = 1075 degree/watt-sec.
a = 1072 sec™1 T = 0,1 sec
A = 10~3 d.egree"1 D= 0,1
Then the state equations, in matrix notation, are _
-1 103 1 o 1 0 106 0 o
1075 -10=2 ¢ 0o 0 0 0 0 0
. 1 0 -1 =103 1 0 o 106 o
X = -5 . 2 x +
0 0 10~2 -10% ¢ 0 o o0 o0
1 0 1 0 -1 =107 o o 10°
0 0 0 0 10~3 -10~%2 o 0 0
L -] - -
6.2
1 0 0 0 0 0
y=|l0 o 1 o o olzx 643
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The plant equations are now known, and the step=-
by=-step design procedure of the flrst section of Chepter 5
is applicable. The first step in the design procedure
i1s the test for decoupling. To carry out the test, the
matrix B¥ must be formed and checked for nonsingularity.
For the present example, B¥* 1s easlly formed because each
row matrix C3B, 1 =1, 2, 3, is non-zero. Thus each di'

i=1, 2, 3, 1s 0, and, in accordance with Egquation 5.3,

¢yB 106 o 0
B* = (C,B = |0 106 0 6.4
C5B 0 o 106

Clearly, B* is nonsingular, and the system can be decoupled
by state variable feedback,

In step (2) of the design procedure F* and G#, the
compensation matrices which put the system in integrator

decoupled form, are calculated by using Equations 5.4 and

5.5. They are

1076 1073 -10® o -10® o
pr =] =107 o 1076 1073 -107¢ o 6.5
_:10‘6 o -1 o 1076 10-3
106 o 0
@ = | 0 1076 o 6.6
0 0 1076
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The state equations for the ID plant are

0 0 | o 0 0 o | Ml o o]
1075  -102| o 0 0 0 ol o o
. 0 o o 0 0 0 01 0
S 0 1075 -1072 o o | "o o o|®
0 o o 0 0 0 0 0 1
0 o o o 1075 -102 0 0 o]
B 6.7
0 0 0 o0
v = o 1 0 0 ofzx 6.8

In step (3) the matrix Q is needed in finding the
canonically decoupled representation of the ID plant., Here,
the first ny rows of @ are discussed in detall, In order
to find these rows the subspace Qi is considered. The
vector space @ is the set of all row vectors 1, which
satisfy the relation
¥ = {nsnad =0, 3=0,1, «0v, 5 k=2, 3% 6.9
where A and B are the matrices in Equation 6.,7. As usual,
the row vector 4, 1s written [ N2 eee Izn]. and the
coefficient array for the equations resulting from

Equation 6.8 is formed, as
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Fb o 1 0 0 0
0o 0 0 105 o 0
0o 0o 0 =107 o 0
o o o 1070 o 0
0 0o o0 -10-11 o 0
o o o 10713 o 0
6,10
0 0 0 0 1 0
0o 0 o0 0 0o 10~
o o0 o 0 0o -10"7
o 0 0 0 o 1077
0 0 O© 0 0 -10-11
0o o0 o 0 0 10'13J

With the aid of a digital computer, the Hermite

normal form of the above array is found to be

—

0 0 1 0 0

0 0 0 1 0
6,11

0 0 0 0 1

0 0 0 0 0

| H o o o]

|

where the all-zero rows are deleted. The 4 x 6 array

ylelds the following relationships among the elements of s
Q3 =Ny= {5 = 76 =0 6.12

and so a sultable basis for @ is {[1 0 0 0 0 o],
[o 1 0 0 0 0]}. The rank of & 1s n; or 2,
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and the number of zeroes of subsystem 1 is ny - d1 + 1
or 1,

The first row of Q4 is C4, which is also a member
of the above basis, and the second row is taken as the
remaining basis vector. Proceedlng in a similar manner
for Q1 and @y, one finds that

Q=1 6.13
where I is the 6 x 6 identity matrix., The fact that Q is
the identity matrix indicates that the ID plant 1is already
in canonically decoupled form, and nc change of varliables
is needed. Equations 6.7 and 6.8 apply to both the ID
plant and the CD representation of the ID plant.

The subsystem matrices for the ID plant are outlined
in the matrices of Equations 6.7 and 6.8. As expected, the
subsysten equations are identlcal because the cores are
agssumed to be identical. A comparison of the matrices of
Equation 6.7 with those in Figures 3.3(a) and (b) reveals
that

éi = [-1072] 1=1, 2,3 6.1k
and so each subsystem has a fixed zero at s = -,01 and
two poles which are under the control of state variable
feedback. Step (4) is now complete.

The remalning steps of the design procedure require
that a sultable response be selected for each subsystem and
that the compensation matrices be found that give the de-
sired response. Suppose that the desired dynamics of
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each subsystem are embodied in the following transfer

functions (Weaver and Vanasse, 1967):

6
Z;=_2____.1° 1=1, 2, 3 6.15
Ty 8~ + 28 + 2

The presence of the fixed zZero close to the origin
must be taken into account., Only two poles are present
in each subsystem so that if one of them 1s used for can-
cellation, a first-order response results., Apparently, one
additional pole is needed in each subsystem; then one pole
can be used for cancellation and two poles are left to
achieve the second-order subsystem response. This technlque
1s the one used below.

It 1s desired to add one pole to each subsystem,
Method A applies, and by Theorem 4,1 decoupling is not
lost. Let the three, identical serles compensators each
have unity gain and one pole at s = -1, The equations for

the compensation are

-1 0 0 1 0 0
ry - -
x=|0 =1 olx+|0 1 O|lau 6.16
0 0 -1 0 0 1
us=x

Using Equations 5.55 and 5.56 the state equations for the

augmented plant are found to be
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F:; -103
1070 -1072
1 0
0 0
x=| 1 0
0 0
0 0
0 0
K 0
1
y=1]0
0

1 o 1% o o
0 0 o o0 o
1 0 o 106 o
0 0 0 0 o0
-1 -103 o0 o 10%] x
1075 2102 o0 o0 o
0 0 -1 0 0
0 0 0 -1 0
0 0 0 0 -1
0 o o
o 0 o
0 0 o
o 0 o
+ 0 o0 O0f u 6.18
0 0 o0
1 0 0
o 1 0
o o0 1
o 0 0 0 o0
0 0 0~ 0 ol x 6.19

>
o
o
o
o

The basic deslgn procedure 1s now applied to the augmented

plant., The compensation matrices F¥* and G* required to

form the ID augmented plant are
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-2,99x10~6

10-6
10"6

-2

10~6

G* 0

0

-1,01x10™3

10-3
10=3

10‘6

10-6
.99x10~6

0

10'6

10~6 10™3
-2.99x10~%  -1.01x1073
106 10~3
10-3 2 -1 -1
1073 -1 2 -1 6.20
-1,01x10"3 -1 -1 2
0
0 6.21
10"6

and the system matrices for the ID augmented plant are

found by forming A + BF# and BG%,

Each subsystem has three poles and one fixed zerxo,

or d; = 1, for i =1, 2, 3.

This means that the matrix Q,

which is needed to find the CD representation, has C4 and

CiAg 1 = 1’ 2’ 3 as I'OWSa

A simpler Q 1s obtained by

using the standard bases for Qq, Qp, and Q3 found by using

the Hermite normal form.

is

The @ resulting from this procedure
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(1 0 0 0 0 o0 o0 o o
©o 1 0 0 0 0 0 0 0
0 o0 1206 0 100 0 1 o o
©o 0 1 0 0 0 0 0 o0
Q=0 0 0 1 0 0 0 o0 0 6,22
10 0 0 o0 1206 0 0 1 o
©o 0 0 0 1 0 0 0 o
© 0 0 0 0 1 0 0 o0
(1076 o 10 0 0o 0o 0o o 1]

In terms of the new state variables for the ID
augmented system the system matrices are in block diagonal

form with the following matrices along the diagonals

-1 -107 108
_ - -2
By, = 10~5 -10 0 6.23
|-9.9x10°7 -1,01zx1073 1
[ o
_;o'
Cyy = f1 o o] 6.25

For the ith subsystem the desired transfer function

which takes into account the fixed zero is

Ji _ js+.01_)106

Ty (s+.01)(s2425+2) 6.26
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The set of feedback coeffilclents 91_and the galn g4,
must be found to realize the above subsystem response.
This task was accomplished by using the computer program
of Melsa (1967), a program which uses the phase varlable
transformation discussed in Chapter 5. The results are
shown in the following compensation matrices which apply
to the system expressed in terms of the state variables

corresponding to the matrices of Equations 6.23 - 6.25,

o 2x1002 -2 0 o0 o0 o0 0
F=|0o o 0 0 2x103-2 0 o0 0 6427
0 0 0 0 O 0o o 2x1073 -ﬂ
1w o o
G = 0 106 0 6.28
0 o 10

In terms of the state variables for the original
augmented plant, the compensation matrices F and G are
obtained from Equations 5.17 and 5.18, repeated as

F = P*+ B*~1FQ 6.29
G = B*~1g 6.30

All of the quantities on the right-hand sides of Equatlons
6.29 and 6.30 have already been calculated (B*~1 is just
G*), Performing the required matrix multiplications and

addition ylelds
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-2.99x10~%  9.9x107% -1076 10~3
F=| -10% 10~3 -2.99510°  g.9x10™¥
-10-6 10-3 -10-6 10~3
-10~6 103 0 -1 =1
~10~6 10~3 -1 0 -1 16.31
2.99xlo'6 9.9:;10"4 -1 =1 0
1 0 o0
G=0 1 o0 6.32
0o o0 1

With these compensation matrices the multivariable system
1s decoupled into 3 noninteracting subsystems, each of which
has the transfer function of Equation 6.26.

As a practical matter it is noted that, because a
simple reactor model 1s belng used, all the states can be
measured., As a result the design, though complicated, can
be physically implemented.

This exémple has been worked for the case where the

following subsystem transfer function 1is desired

¥i = 106(S+.01) 6.33
Ty s2 + 20s + 200

In thls 1lnstance the form of the response is the same as in
the previous case, but the system bandwidth has been in-
creased by a factor of 10, The corresponding F and G

matrices are
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~1,83x10~% 1.899x10"2 -1,9x10~5 10-3

F =| -1.9x10-5 10=3 -1.83x10~% 1,899x10~2
-1.9x10~5 10-3 -1,9x105 10~3
-1,9x10=5 10-3 -18 -1 -1
-1,9x10"5 103 -1 =18 -1 | 6,34

-1.83x10"% 1.899%1072 -1 -1 -18

G=1I 6.35
The first stage of the design process is now

complete. Still needed before the process is finished are
simulation studies to verlfy noninteractlon and the sub-
system responses and a sensltlivity investigation, One
would be especlially interested 1in determlning what effect
changes in or the removal of some of the feedback co-
efficients has on the response. These studies are best
carried out by those who are directly responsible for the

design of the physical system.

Summary

The example of this chapter 1s taken from a
recently published textbook on reactor dynamics and control
(Weaver, 1968). It is a problem that has some engineering
significance. Although the design has not been carried to
completion (physical implementation), the results which are
gilven indicate that the design techniques presented in this
dissertation should be considered when designing

multivariable systems,
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CHAPTER 7
CONCLUSIONS

In this chapter all previous results are

summarized, and suggestions are given for further research,

Summary
The study of design techniques for multivariable

systems 1is the topic of this report. Both conventional,
frequency-domain techniques and modern, combined frequency-
domain, time-domain procedures are considered,
Noninteraction 1s taken as one of the two basic design
requirementss the other is that specified subsystem
transfer functlons be achieved. Conventional methods are
duickly shown to have the disadvantage of complexity=-
both in carrying out the design calculations and in the
physical implementation of the compensation. There are,
however, some problems for which the conventlonal methods
yield satisfactory designs, and research continues in this
area (Chen, 1968 a, b),

The bulk of the attention to design is given to
the state varlable feedback design of multivariable systems.
After its introduction by Morgan in 1963, several authors
studied the technique, with the most recent and complete
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treatment being given by Gilbert (1968). Gilbert's
results make possible the identification of the fixed
zeroes of the subsystems of the multivariable system and
the number of subsystem poles which are controlled by
state variable feedback. By treating each subsystem in-
dividually, the desligner can apply some of the previously
developed knowledge of state variable feedback design of
single-input, single-output systems.,

A topic which has not been previously studled is
the addition of dynamlcs to the multivarliable system before
state varlable feedback is applied, for the purpose of im-
proving the system response, Three methods are proposed
and analyzed in Chapter 4 for adding dynamics, The first
method, Method A, requires that the compensation be placed
in the control-input channels of the multivariable plant
and that all the states of the augmented system be fed
back. This method is the preferred one when 1t works,
because of its simplicity., However, its use could lead
to loss of coupling or loss of zeroes. An alternate ap-
proach, Method B, is shown to have serious practical
limitations.

Method C applies 1n every case in which the
multivariable plant can be decoupled, According to
Theorem 4,3, the use of Method C makes it possible to
apply the same techniques for the multivariable plant as
are applied in single-input, single-output design.
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In particular, zeroes and poles can be added with the
assurance that decoupling is not lost, the added zeroes
end plant zeroes appear unchanged in the proper subsystem
transfer functions, and both the added poles and the plant
poles can be arbltrarily positioned by state variable
feedback, |

Chapter 5 1s intended to serve as a clear outline of
what must be done to apply the state variéble feedback de=-
sign techniques of Chapters 3 and 4, The presentation is
orlented toward digital computer usage because practical
multivariable design problems are frequently of high order
and require tedlous calculations that are most accurately
performed by the computer. In the case where dynamlcs are
added to the decoupled multivariable plant, a short-cut ls
given to cut down on computer time.

The practical application of Chapter 6 shows that
the design technigques of the previous chapter do indeed

have value in control system design.

Further Research

Although the design technliques presented here are
sufficiently complete to be used in practical design
problems, there are several toplcs which merit further
research. Among these are

1. The decoupling of multivarlable systems for

which B* is singular,
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2. Further study of Method A,
3. Further study of the considerations involved
in the initlal decoupling step of Method C.

L, The spplication of the techniques of gain-

insensitivity to multivariable systems.

5. The relationship of the design methods to

those involving integral performance indlces,

6. Multivariable system design by state variable

feedback where noninteractlion 1is not required.

7. State Estimation in multivariable systems,
Bach of these toplcs is now discussed briefly,

For topic 1, Gilbert (1968) mentions that as long
as the plant matrix P(s) is nonsingular, dynamics can be
added to the multivariable system so that the resulting
augmented system can be decoupled by state variable
feedback. The practical implications of thls procedure
have not been reported. In particular; one needs to know
how to find the added compensation and whether it is
physically realizable, In the present study, dynamlcs are
added to make it possible to meet the design specificatlions,
In problems which cannot be decoupled by state variable
feedback unless dynamics are added, it would be desirable
to be able to choose the dynamics which permitted
decoupling and also contributed to a good design.

For topic 2, more work is needed to find out when

serles compensation causes loss of coupling and loss
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of zeroes. Theorem 4.1 provides answers for the simplest
form of series compensation, but other situations have yet
to be considered.

For topic 3, the best way of decoupling the plant
before adding decoupled compensation is not known, nor is
it even known what criteria for defining the best way
should be used. Perhaps sensitivity theory could be of
value here.

Topic 4 appears to be related to the previous
topic because, according to Herring (1967), systems are
made gain-insensitive by conditioning the plant before the
final application of state variable feedback, Herring's
results apply to single-input, single-output systems; the
multivariable case has yet to be studied.

In topic 5 performance indices are mentioned as
an alternate means for specifylng the deslred system
response, In fact, the ldea of using state variable feed-
back originated in connection with design for minimizing
a particular integral performance index (Schultz and
Melsa, 1967). This dissertation uses desired transfer
matrices as the performance specification. BRelatlons
between the designs resulting from the two different types
of specifications are known for single-input, single-
output systems, but not for multivarlable systems., Here

the constraint of noninteraction should prove useful.
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For topic 6, study of the design situation in which
noninteraction is not a requirement needs to be conducted.
In an alrcraft, for example, the plane rolls when making
turns, so that changes in yaw are accompanied by changes in
roll, and these changes are tolerated. One would llke to
be able to choose a speciflic, non-zero transfer function
between r; and ¥y (1 # 3), and realize it by state variable
feedback. At present, no results are available in this
area.

The final toplic is concerned with the very important
practical problem of estimating state varlables whlch cannot
be measured directly. Due to the large number of state
variables in a typical multlvariable system, the need for
estimating states 1ls great. For the case where no noise
is present the work of Luenberger (1964, 1966, 1967) and
others (Singer, 1968) should be investigated as a basils
for developing the theory for the case where decoupled
multivariable systems are belng designed.

With the increasing complexity of the design
problems being considered by control engineers, the
continued development of multivariable system theory seems
assured. State variable feedback design should share in

this development,
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